

MEG/EEG-pipeline documentation page

Status of the documentation build

[image: Documentation Status]
[#1]MEG/EEG-pipeline provides documentation for the Magnetoencephalography (MEG) and ElectroEncephaloGraphy (EEG) systems in the MEG laboratory and EEG setup within Brain Imaging Core Technology Platform.
It offers a simple and intuitive overview on how MEG machines work, the specification of the system, what kind of data are generated and how to process them using ready-to-use pipelines. This documentation additionally provides a guide to build your own MEG-system experiment and what is required to successfully execute the experiment.

If you like to get a .PDF document of this website, click here Download PDF[#2]

[image: AI generated MEG-system image]
Check out the MEG System description: KIT Machine section for further information, including
how to Data preparation the project.

Note

This project is under active development.

Systems Overview

	MEG System description: KIT Machine
	System Overview

	LAB setup

	MEG-Channels

	MEG-Racks

	MSR: Magnetically Shielded Room

	Contact

	References

	MEG System description: OPM-MEG Machine
	System Overview

	Sensor locations on helmet

	EEG System setup

	MEG Quizz

Operation Protocol

	Authorization documents

	Operation Protocol
	Stylus location and markers

Experiments Design

	Implementing your experiment
	Purpose

	Definning the hardware needs for your experiment

	Hardware involved in experiment

	Files produced by the experiment design

	Experiments

	Building the requirement of your experiment

Booking and usage

	Identifying your usage

	Booking system and scheduling

Pipelines and Data

	Pipeline Description
	General overview

	Data preparation

	Installation

	Reading the Raw Data

	Data storage
	MEG Data storage

	MRI Data storage

	Data naming and uploading protocol
	Laser scan files

	KIT-MEG files

	OPM files

	Data uploading

	Setting up your environment for processing

	Installing freesurfer on windows

	Kit2Fiff Tutorial
	Kit2Fiff

	Coreg without native MRI

	Software stack
	Example:

	BESA Software
	You have MRI data of your participant

	Generic processing pipeline

	Manual labelling of “bad” channels

	Denoising

	Independent component analysis

	Frequency Analysis

	Brain Source Estimate

	Code Overview

	Pipeline Notebooks
	Resting State Processing Pipeline

	Data preparation and coregistration after data acquisition

	Coregistration after KIT2FIFF

	Conclusion

	Source estimation and localization

	Source localization and estimation

	Close-up on forward solutions

Maintenance

	Maintenance of MEG system
	Checks to be made

	Data retrieval from ATP and ATL for diagnostic

	Contacts table

Emergency and Risk Asessment

	Emergency procedures

Glossary and API

	Glossary

	API documentation of MEG-Pipeline
	megpipeline

Footnotes

[#1]
https://example-sphinx-basic.readthedocs.io/en/latest/?badge=latest

[#2]
https://meg-pipeline.readthedocs.io/_/downloads/en/latest/pdf/

MEG System description: KIT Machine

System Overview

[image: MEG System]
MagnetoEncephaloGraphy (MEG) systems are machines capable of measuring the magnetic field generated by the brain.
They provide high temporal and spatial resolutions. They are non-invasive, similar to a microphone listening to your voice, MEG listens for the brain activity.
MEGs are equipped with highly sensitive sensors called SQUIDs. In order for SQUIDS to operate, they need to be cooled down to -277 degres, to achieve this temperature
liquid Helium is needed.
Unlike MRI, MEG cannot show the anatomical structure of the brain, therefore MRI scans are combined with MEG measurements to identify the parts of the brain responsible for the measured brain activity.
The magnetically shielded room is a product of Vacuumschmelze (Hanau, Germany). The shielding effect is provided by two layers of mu metal; the inner layer is 3 mm and the outer layer is 2 mm thick. Predicted shielding performance was rated to be -60 dB at 1 Hz; actual performance exceeds this prediction. The exterior dimensions of the room are 2.9 x 3.5 x 2.9 m, and the inner dimensions are 2.4 x 3.0 x 2.4 m.
We refer to our system as having 160 channels, but in actuality it contains:
157 axial gradiometers used to measure brain activity,
3 orthogonally-oriented (reference) magnetometers located in the dewar but away from the brain area, used to measure and reduce external? noise offline, and
32 open positions, of which we currently use 8 to record stimulus triggers and the other 24 channels to record Eye Tracker data directly, auditory signals from our mixer and vocalization information from our optoacoustic fiber-optic microphone.

The system is located inside a magnetically shielded room. KIT refers to Kanazawa Institute of Technology, the manufacturer of the system.

LAB setup

Computers:

	MEG Main PC: used to acquire the MEG data

	stimulus1 pc: used to run the experiment

	stimulus 2 pc: used to put the experiment

MEG-Channels

(This part needs to be rewritten)
Channels 0 to 222: Gradiometers squids

Channels 208-223: Magnetometers for reference magnetic field (these are used to denoising and to understand the ambiant magnetic field the environment)

224: Lightsensor 1

225: Lightsensor 2

228: Microphone

229: Event marker bit 0

230: Event marker bit 1

231: Event marker bit 2

One of the channels (In the 80’s) displays a digital signal, this is because one of the sensors are shut off and not used.
Processing pipeline should include this exclusion and not process data from this channel.
(channel name to be identified).

MEG-Racks

The KIT-MEG system has 7 racks

[image: MEG Racks System]

MSR: Magnetically Shielded Room

The KIT-MEG is located in an MSR built by VacuumShmelze[#1]

[image: MEG Racks System]
[image: MEG Racks System]

Contact

	Name

	Email

	Number

	Role

	Hadi Zaatiti

	hz3752@nyu.edu

	+971 56 275 4921

	Research Scientist

	Osama Abdullah

	osama.abdullah@nyu.edu

	NA

	Senior Scientist

	Yoshiaki Adachi

	adachi@ael.kanazawa-it.ac.jp

	NA

	MEG-KIT machine constructor reference

References

The following is a list of references for further understanding on MEG systems

	
	MNE-Python: Overview and tutorials
	
	https://mne.tools/stable/auto_tutorials/intro/10_overview.html#sphx-glr-auto-tutorials-intro-10-overview-py

	
	Marijn van Vliet’s “Introduction to MNE-Python”
	
	https://mybinder.org/v2/gh/wmvanvliet/neuroscience_tutorials/master?filepath=mne-intro%2Findex.ipynb

	
	Processing and analysis scripts from various Nellab members/alumni
	
	https://github.com/benebular/mne-python-preproc-templates

	https://github.com/jdirani/MEGmvpa

	https://github.com/jdirani/mne-preprocessing-template

	https://github.com/jdirani/meg-analysis-templates

	https://github.com/grahamflick/Nellab-MRI-Pipeline

	https://github.com/grahamflick/Tools-for-Combined-MEG-and-Eye-tracking

	
	Kit2fiff and ICA examples:
	
	https://docs.google.com/document/d/1zoxPCngUmyXuKYTNWM8W-_ncTld9okRuYncGXdVUtV0/edit?usp=sharing

	https://docs.google.com/document/d/1OrVP9ts1gTGB5fhzx8YcK3JKZQgm0HM4Ic3hKtVzHzA/edit?usp=sharing

	https://docs.google.com/document/d/1X9Tj28ekJ93TubJ52TnrebDvIh8zeXHLp2aMURNV40Y/edit?usp=sharing

	
	Books:
	
	Hansen, Peter & Kringelbach, Morten & Salmelin, Riitta. (2010). MEG: An introduction to methods. 10.1093/acprof:oso/9780195307238.001.0001.

Footnotes

[#1]
https://www.vacuumschmelze.com/

MEG System description: OPM-MEG Machine

System Overview

The OPM has been installed on the 4th of march 2024.

Sensor locations on helmet

To access the sensors locations on the helmet: under the OPM computer, go to /usr/share/hedscan/doc/Beta2SensorLocations.png

Footnotes

EEG System setup

Preliminary notes:

	scripts developed with Psychtoolbox should set the screen number set to ‘1’

	make sure that “Rear” projection mode is enabled, so that the participant sees text correctly from left to right

Footnotes

MEG Quizz

	Test your knowledge. Click the next link to start the quizz, you will need to sign-in to your email.
	Quizz form access[#1]

Footnotes

[#1]
https://docs.google.com/forms/d/e/1FAIpQLSfpJx-E2YwoEvfH5JGNksXimtnyol8553SXU_EYrdWqzx7AtA/viewform?usp=sharing

Authorization documents

The following documents need to be signed by the participant prior to the study:

	Consent to participate in a research study

Every project owner must have an IRB for his study approved before getting participants to do their experiment

	IRB approval for project owner

Footnotes

Operation Protocol

Lead author:

Step 1 is to acquire a scan of the head surface generating a .ext (to be added) file for the participant

 Implementing your experiment

Implementing your experiment

Purpose

This section provides information to help you out designing your MEG experiment.
What is meant by experiment, is the stimuli involving usually visual and auditory or other perception-type stimulus.
The experiment defines the timing of display of the stimuli, tracks responses from the participants and controls the different settings related
to the content being presented to the participant.
This section also provides the requirements that should be met to run your experiment in the NYUAD MEG Lab.

There are three tools primarily used for designing the experiment

	Psychotoolbox

	Presentation

	Psychopy

Definning the hardware needs for your experiment

Depending on your study you might need different require different hardware, the following use cases can be identified:

	Show visual stimuli to participants for a certain amount of time

	Allow participant to send their input via buttons

	Get eyetracking information from the eyetracker device

	Provide audio to the user

	Record audio from the user’s voice

Hardware involved in experiment

	Propixx

	Datapixx

	Eyetracker

Datapixx pixel mode Pixel mode[#1].

The eyetracker sends three different signals to the MEG/EEG channels:

	The X-coordinates of the eye as function of time

	The Y-coordinates of the eye as function of time

	The Area of the pupil of the eye as function of time

Files produced by the experiment design

	An experiment in PsychToolBox is a .m MATLAB script.

	Presentation provides a .exp file, an experiment file.

	PsychoPy is a .py experiment file.

If using python library PsychoPy:

	Open the file with .psyexp extension

	you can run from within the psycopy builder the experiment file with .psyexp extension c

Experiments

Experiments

	Experiments example 1 (Psychtoolbox): Resting state

	Experiments example 2 (Psychtoolbox): Triggering all channels on KIT

	Experiments example 3 (Psychopy): Triggering all channels on KIT

	Experiments example 4 (Psychopy): FaceInversion

	Experiments example 5: Response buttons experiment

Footnotes

[#1]
https://docs.vpixx.com/vocal/defining-triggers-using-pixel-mode

 Experiments example 1 (Psychtoolbox): Resting state

Experiments example 1 (Psychtoolbox): Resting state

	Resting state experiment: Using PsychToolBox the following script executes a resting state experiment.

The participant is asked to close their eyes for some time, then to open their eyes while fixing a centered shape for a same duration.
Two triggers are sent from the ‘Datapixx3’ to the KIT-MEG on channels 224 (closing eyes) and 225 (opening eyes).
The code for the experiment can be found here: Source file link
resting_state_meg.m[#1].

clearvars
%Screen('Preference', 'SkipSyncTests', 0);
AssertOpenGL;

vpix_use = 1; % 0 if vpixx is not conected

% KEYBOARD SETUP
responseKeys = {'2', '3', 'y', 'n'};
KbName('UnifyKeyNames');
KbCheckList = [KbName('space'),KbName('ESCAPE'), KbName('leftarrow'), KbName('rightarrow')];
for i = 1:length(responseKeys)
 KbCheckList = [KbName(responseKeys{i}),KbCheckList];
end

% SCREEN SETUP
screens = Screen('Screens');

s = max(screens);

black = [0 0 0];

[w, rect] = Screen('Openwindow',s,black)

Priority(MaxPriority(w));

Screen('BlendFunction', w, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
pixelSizes=Screen('PixelSizes', s);
fps=Screen('FrameRate',w);
ifi=Screen('GetFlipInterval', w);

[wx, wy] = RectCenter(rect);
Screen('Flip', w)

% Uncomment if Vpixx is connected, or else experiment will crash

if vpix_use == 1
 %VIEW PIXX SETUP
 Datapixx('Open');
 Datapixx('EnablePixelMode'); % to use topleft pixel to code trigger information, see https://vpixx.com/vocal/pixelmode/
 Datapixx('RegWr');
end

% TRIGGERS SETUP
trigRect = [0 0 1 1]; % Top left pixel that controls triggers in PixelMode
%centeredRect_trigger = CenterRectOnPointd(baseRect_trigger, 0.5, 0.5);

% RGB color for top left pixel to trigger a channel on MEG

% output of Vpixx will be triggered
% Ref: https://docs.vpixx.com/vocal/defining-triggers-using-pixel-mode

% % triggers as color (RGB) of tope-left pixel in the screen
% Reference of all triggers for KIT MEG in NYUAD:
% trigger_224 = [4 0 0]; % 224 meg channel
% trigger_225 = [16 0 0]; % 225 meg channel
% trigger_226 = [64 0 0]; % 226 meg channel
% trigger_227 = [0 1 0]; % 227 meg channel
% trigger_228 = [0 4 0]; % 228 meg channel
% trigger_229 = [0 16 0]; % 229 meg channel
% trigger_230 = [0 64 0]; % 230 meg channel
% trigger_231 = [0 0 1]; % 231 meg channel
% example:
% [16 0 0] in binary is [10000 0 0] ==> Means pin number 4 on digital
% [64 0 0] in binary is [1000000 0 0] ==> Means pin number 7 will be triggered

% Define triggers for closing eyes and opening eyes
trig.closed = [4 0 0]; %224 meg channel
trig.open = [16 0 0]; %225 meg channel

%Ensure all vpixx digital output are set to 0 by putting the trigger pixel
%to black [0 0 0]
Screen('FillRect', w, black, trigRect);

% STIMULI SETUP

fixRadius = 30;
fixRect = CenterRectOnPoint([0, 0, fixRadius*2, fixRadius*2], wx, wy);
fixColor = [150 150 150];

time2rest = 60*5;

% START EXPERIMENT

Screen('DrawText', w, 'PRESS SPACE AND START CLOSED EYES REST', wx-250, wy, [255,255,255]);
Screen('Flip', w);

KbWait([],2)

Screen('FillRect', w, trig.closed, trigRect);
Screen('Flip', w);
WaitSecs(time2rest)

Screen('DrawText', w, 'PRESS SPACE AND START OPEN EYES REST', wx-250, wy, [255,255,255]);
Screen('Flip', w);
KbWait([],2)

Screen('FillRect', w, trig.open, trigRect);
Screen('FillOval', w, fixColor, fixRect);
Screen('Flip', w);
WaitSecs(time2rest)

Screen('CloseAll');

if vpix_use == 1
 %VIEW PIXX SETUP
 Datapixx('Close');
end

Footnotes

[#1]
https://github.com/hzaatiti-NYU/meg-pipeline/blob/main/experiments/psychtoolbox/general/resting_state_meg.m

 Experiments example 2 (Psychtoolbox): Triggering all channels on KIT

Experiments example 2 (Psychtoolbox): Triggering all channels on KIT

	Triggering all channels on the KIT machine one by one

The following script triggers each event channel on the KIT from 224 to 231,

test_all_meg_channels_triggers.m[#1].

%% This script should send a trigger to each MEG channel, with a 1 second delay between each trigger

clearvars
Screen('Preference', 'SkipSyncTests', 1);
AssertOpenGL;

% Configuration parameters

vpix_use = 1; % 0 if vpixx is not conected
trigger_test = 1;
% if 0, trigger is 1 pixel,
% if 1 trigger is bigger (to be able to see it)

% SCREEN SETUP
s = Screen('Screens');

s = 2;

%Colors definition in RGB
black = [0 0 0];
white = [255 255 255];

% Get pointer to screen window and a point
[w, rect] = Screen('Openwindow',s,black)
Priority(MaxPriority(w));
Screen('Flip', w)
[wx, wy] = RectCenter(rect);

if vpix_use == 1
 %VIEW PIXX SETUP
 Datapixx('Open');
 Datapixx('EnablePixelMode'); % to use topleft pixel to code trigger information, see https://vpixx.com/vocal/pixelmode/
 Datapixx('RegWr');
end

% TRIGGERS SETUP

% Top left pixel that controls triggers in PixelMode
if trigger_test == 0
 trigRect = [0 0 1 1];
 %centeredRect_trigger = CenterRectOnPointd(trigRect, 0.5, 0.5);
elseif trigger_test == 1
 trigRect = [0 0 100 100];
 %centeredRect_trigger = CenterRectOnPointd(trigRect, 25, 25);
end

%centeredRect_trigger = CenterRectOnPointd(baseRect_trigger, 0.5, 0.5);

% Define trigger pixels for all usable MEG channels
trig.ch224 = [4 0 0]; %224 meg channel
trig.ch225 = [16 0 0]; %225 meg channel
trig.ch226 = [64 0 0]; % 226 meg channel
trig.ch227 = [0 1 0]; % 227 meg channel
trig.ch228 = [0 4 0]; % 228 meg channel
trig.ch229 = [0 16 0]; % 229 meg channel
trig.ch230 = [0 64 0]; % 230 meg channel
trig.ch231 = [0 0 1]; % 231 meg channel

fields = fieldnames(trig); % Get the field names of the structure

time2trigger = 5;

times = 3;
for j = 1:times

 for i = 1:numel(fields)
 fieldName = fields{i}; % Get the field name
 fieldValue = trig.(fieldName); % Get the value of the field

 fprintf('%s: [%d %d %d]\n', fieldName, fieldValue); % Print the field name and value

 message = ['One trigger every ', int2str(time2trigger),' seconds.' ...
 'Channel name getting triggered now: ', fieldName];
 Screen('DrawText', w, message, wx-250, wy, [255,255,255]);

 Screen('FillRect', w, fieldValue, trigRect);
 Screen('Flip', w);
 Screen('DrawText', w, message, wx-250, wy, [255,255,255]);
 Screen('FillRect', w, black, trigRect);
 Screen('Flip', w);
 WaitSecs(time2trigger);
 end
end

Screen('CloseAll');

if vpix_use == 1
 %VIEW PIXX SETUP
 Datapixx('Close');
end

Footnotes

[#1]
https://github.com/hzaatiti-NYU/meg-pipeline/blob/main/experiments/psychtoolbox/general/test_all_meg_channels_triggers.m

 Experiments example 3 (Psychopy): Triggering all channels on KIT

Experiments example 3 (Psychopy): Triggering all channels on KIT

	Triggering all channels on the KIT machine one by one

The following script triggers each event channel on the KIT from 224 to 231 using PsychoPy script

trigger_test_psychopy.py[#1].

from psychopy import visual, core
from pypixxlib import _libdpx as dp

Define trigger pixels for all usable MEG channels
#trig.ch224 = [4 0 0]; %224 meg channel
#trig.ch225 = [16 0 0]; %225 meg channel
#trig.ch226 = [64 0 0]; % 226 meg channel
#trig.ch227 = [0 1 0]; % 227 meg channel
#trig.ch228 = [0 4 0]; % 228 meg channel
#trig.ch229 = [0 16 0]; % 229 meg channel
#trig.ch230 = [0 64 0]; % 230 meg channel
#trig.ch231 = [0 0 1]; % 231 meg channel

def drawPixelModeTrigger(win, pixelValue):
 # takes a pixel colour and draws it as a single pixel in the top left corner of the window
 # window must cover top left of screen to work
 # interpolate must be set to FALSE before color is set
 # call this just before flip to ensure pixel is drawn over other stimuli

 topLeftCorner = [-win.size[0] / 2, win.size[1] / 2]
 line = visual.Line(
 win=win,
 units='pix',
 start=topLeftCorner,
 end=[topLeftCorner[0] + 1, topLeftCorner[1]],
 interpolate=False,
 colorSpace='rgb255',
 lineColor=pixelValue)
 line.draw()

def RGB2Trigger(color):
 # helper function determines expected trigger from a given RGB 255 colour value
 # operates by converting individual colours into binary strings and stitching them together
 # and interpreting the result as an integer

 # return triggerVal
 return int((color[2] << 16) + (color[1] << 8) + color[0]) # dhk

def Trigger2RGB(trigger):
 # helper function determines pixel mode RGB 255 colour value based on 24-bit trigger (in decimal, base 10)
 # returns a list with R, G and B elements

 # return [red, green, blue]
 return [trigger % 256, (trigger >> 8) % 256, (trigger >> 16) % 256] # dhk

##
START
Initialize connection and set up some default parameters:
dp.DPxOpen()
dp.DPxEnableDoutPixelMode()
dp.DPxWriteRegCache()

win = visual.Window(
 screen=1, # change here to 1 to display on second screen!
 monitor=None,
 size=[1920, 1080], # dhk: PsychoPy drew a grey (49,49,49) border around this small window
 # fullscr=False, # therefore, top-left pixel was drawn with incorrect color.
 fullscr=False, # using a full screen window resolved this issue
 pos=[0, 0],
 color='black',
 units="pix"
)

testvals = [0, 64, 128, 191, 255]

KIT MEG Channels triggered via Pixel Model by setting top left pixel to a specific color
#trig.ch224 = [4 0 0]; %224 meg channel
#trig.ch225 = [16 0 0]; %225 meg channel
#trig.ch226 = [64 0 0]; % 226 meg channel
#trig.ch227 = [0 1 0]; % 227 meg channel
#trig.ch228 = [0 4 0]; % 228 meg channel
#trig.ch229 = [0 16 0]; % 229 meg channel
#trig.ch230 = [0 64 0]; % 230 meg channel
#trig.ch231 = [0 0 1]; % 231 meg channel

trigger = [[4, 0, 0], [16, 0, 0], [64, 0, 0], [0, 1, 0], [0, 4, 0], [0, 16, 0], [0, 64, 0], [0, 0, 1]]
channel_names = ['224', '225', '226', '227', '228', '229', '230', '231']
black = [0, 0, 0]

failcount = 0
print('\nStarting Pixel Mode Test\n\nTest#\tRGB225 Color\t Expected Dout Returned Dout')

for i in range(5):
 for index, color in enumerate(trigger):

 print('Testing channel', channel_names[index])
 drawPixelModeTrigger(win, color)
 win.flip()
 color = black
 drawPixelModeTrigger(win, color)
 win.flip()
 core.wait(5)
 dp.DPxUpdateRegCache()

win.close()
dp.DPxDisableDoutPixelMode()
dp.DPxWriteRegCache()
dp.DPxClose()

Footnotes

[#1]
https://github.com/hzaatiti-NYU/meg-pipeline/blob/main/experiments/psychopy/trigger_test_psychopy.py

 Experiments example 4 (Psychopy): FaceInversion

Experiments example 4 (Psychopy): FaceInversion

	Face Inversion PsychoPy experiment

Run the FaceInversion_Localizer.psyexp within

FaceInversion Experiment[#1].

Footnotes

[#1]
https://github.com/hzaatiti-NYU/meg-pipeline/tree/main/experiments/psychopy/DiogoLab/NYUAD-Projects-FaceLocalizer

 Experiments example 5: Response buttons experiment

Experiments example 5: Response buttons experiment

The MEG Lab has two response boxes which allow the user to provide their input during an experiment.

The Left box is the grey box and the Right box is the blue box.

	To test the response boxes you can run the following script

% DatapixxDinBasicDemo()
%
% Demonstrates the basic functions of the DATAPixx TTL digital inputs.
% Prints the number of TTL inputs in the system,
% then logs button presses until user hits a key.
%
% Also see: DatapixxSimonGame
%
% History:
%
% Oct 1, 2009 paa Written
% Oct 29, 2014 dml Revised

AssertOpenGL; % We use PTB-3

% Open Datapixx, and stop any schedules which might already be running
Datapixx('Open');
Datapixx('StopAllSchedules');
Datapixx('RegWrRd'); % Synchronize DATAPixx registers to local register cache

% Show how many TTL input bits are in the Datapixx
nBits = Datapixx('GetDinNumBits');
fprintf('\nDATAPixx has %d TTL input bits\n', nBits);

% RESPONSEPixx has 5 illuminated buttons.
% We drive those button lights by turning around 5 DIN bits to outputs.
% Test paradigms could illuminate only the buttons which are valid in context.
% (eg: 1 button when waiting for subject to initiate a trial,
% 2 other buttons when waiting for 2-alternative forced-choice response).
Datapixx('SetDinDataDirection', hex2dec('1F0000'));
Datapixx('SetDinDataOut', hex2dec('1F0000'));
Datapixx('SetDinDataOutStrength', 1); % Set brightness of buttons

% We'll say that we want to calculate response times
% from a stimulus appearing at the next vertical sync.
Datapixx('SetMarker');
Datapixx('RegWrRdVideoSync');
stimulusOnsetTime = Datapixx('GetMarker');

% Fire up the logger
Datapixx('EnableDinDebounce'); % Filter out button bounce
%Datapixx('DisableDinDebounce'); % Uncomment this line to log gruesome details of button bounce
Datapixx('SetDinLog'); % Configure logging with default values
Datapixx('StartDinLog');
Datapixx('RegWrRd');

% Show initial state of all the digital input bits
fprintf('Initial digital input states = ');
initialValues = Datapixx('GetDinValues');
for bit = nBits-1:-1:0 % Easier to understand if we show in binary
 if (bitand(initialValues, 2^bit) > 0)
 fprintf('1');
 else
 fprintf('0');
 end
end
fprintf('\n');

% Report logged button activity until keyboard is pressed
fprintf('\nPlug button box into Digital IN db-25\n');
fprintf('Press buttons to see new log entries\n');
fprintf('Hit any key to stop...\n');
if (exist('OCTAVE_VERSION'))
 fflush(stdout);
end
while ~KbCheck
 Datapixx('RegWrRd');
 status = Datapixx('GetDinStatus');
 if (status.newLogFrames > 0)
 [data tt] = Datapixx('ReadDinLog');
 for i = 1:status.newLogFrames
 fprintf('responseTime = %f', tt(i)-stimulusOnsetTime);
 fprintf(', button states = ');
 for bit = 15:-1:0 % Easier to understand if we show in binary
 if (bitand(data(i), 2^bit) > 0)
 fprintf('1');
 else
 fprintf('0');
 end
 end
 fprintf('\n');
 end
 if (exist('OCTAVE_VERSION'))
 fflush(stdout);
 end
 end
end

% Show final status of digital input logger
fprintf('\nStatus information for digital input logger:\n');
disp(Datapixx('GetDinStatus'));

% Job done
Datapixx('StopDinLog');
Datapixx('RegWrRd');
Datapixx('Close');
fprintf('\n\nDemo completed\n\n');

	To get the response of a user while performing your experiment, you can use the following MATLAB function getButton.m[#1].

function [resp, time] = getButton()

while true
 Datapixx('RegWrRd');
 kbcheck = dec2bin(Datapixx('GetDinValues'));
 if kbcheck(end) == '1' || kbcheck(end-1) == '1' || kbcheck(end-2) == '1' || kbcheck(end-3) == '1' || kbcheck(end-5) == '1' || kbcheck(end-6) == '1' || kbcheck(end-7) == '1' || kbcheck(end-8) == '1'
 for i_but = 1:9
 buttonBox(i_but) = str2num(kbcheck(end-9+i_but));
 end

 resp = find(buttonBox);
 time = GetSecs;
 if length(resp) == 1
 break;
 end
 end
end

The above function will return an integer resp which you will have to translate using the following table to identify the color that has been pressed.

	Box

	Button Color

	Button States

	Response Number (resp)

	Offset button

	Left Box

	Red

	111111111111110000000001

	9

	0

	Left Box

	Yellow

	111111111111110000000010

	8

	1

	Left Box

	Green

	111111111111110000000100

	7

	2

	Left Box

	Blue

	111111111111110000001000

	6

	3

	Right Box

	Red

	111111111111110000100000

	4

	5

	Right Box

	Yellow

	111111111111110001000000

	3

	6

	Right Box

	Green

	111111111111110010000000

	2

	7

	Right Box

	Blue

	111111111111110100000000

	1

	8

function [resp, time] = listenButton(offset)

while true
 Datapixx('RegWrRd');
 kbcheck = dec2bin(Datapixx('GetDinValues'));

 if kbcheck(end-offset) == '1'
 for i_but = 1:9
 buttonBox(i_but) = str2num(kbcheck(end-9+i_but));
 end

 resp = find(buttonBox);
 time = GetSecs;
 if length(resp) == 1
 break;
 end
 end
end

The above function listens to a specific button press depending on the offset variable given as input, if the specific button is not pushed, the function stays in the while loop.

Footnotes

[#1]
https://github.com/hzaatiti-NYU/meg-pipeline/blob/main/experiments/psychtoolbox/general/getButton.m

 Building the requirement of your experiment

Building the requirement of your experiment

Footnotes

 Identifying your usage

Identifying your usage

(Add usage form)

Booking system and scheduling

While scheduling your experiment, avoid rush hours 8:30am and 5:30pm

rush hour has alot of noise avoid experiments during this time

Important

Please schedule your experiment in the MEG lab on https://corelabs.abudhabi.nyu.edu/

Footnotes

 Pipeline Description

Pipeline Description

General overview

 Data storage

Data storage

MEG Data storage

The MEG data is securely stored on NYU BOX, access is given through invitations.
The Data folder is structured in the BIDS standardized format.
Please raise an issue on github repository if you think the structure does not conform to BIDS.

Sign in on NYU Box in the below link

Link to MEG data (Box Invitation Only)

https://nyu.box.com/v/meg-datafiles

Or directly from the below widget

 Setting up your environment for processing

Setting up your environment for processing

We recommend to install MNE as a standalone installer.

The data of the MNE environment will be under C:\ProgramData\mne-python\1.6.1_0

You can setup Pycharm to use this environment as a Python environment for your pipeline project.

The configuration file for setting SUBJECTS_DIR, the directory to the data of your subject, can be set in:
C:\Users\user_name\.mne\mne-python.json

Installing freesurfer on windows

Configure WSL2 on windows
Access the files of the ubuntu distribution by typing \\wsl$\Ubuntu in the file explorer in windows.

Install freesurfer following their documentation page. https://surfer.nmr.mgh.harvard.edu/fswiki/FS7_wsl_ubuntu

Footnotes

 Kit2Fiff Tutorial

Kit2Fiff Tutorial

There are multiple files produced before and during magnetoencephalography. We will use the following here:

	Headscan basic surface .txt

	Headscan points .txt

	HPI coils Marker measurements (x2 files atleast) .mrk (each .mrk contains the position of 5 fiducial points on the face)

	MEG recording .con

Kit2Fiff

The first step is to convert the recording into a standard format for analysis in MNE, the premier software suite for M/EEG analysis.

	Launch your terminal and activate your anaconda environment for MNE analysis. If you haven’t set up an environment yet, do so.

	In your terminal, run mne kit2fiff. This will launch a GUI with the following interface:

	Using the diagram here as a guide, join the files listed above:

[image: AI generated MEG-system image]
After the files are all loaded, you will see the headscan plotted in the gray panel in the middle of the GUI. You can rotate it around. A small sanity check should be performed here to see if the markers are in their expected position around the head.

Note

The parameters indicated by the red circle below should be set according to the experiment control software.

[image: AI generated MEG-system image]
For experiments run in PsycoPy, the events should be indicated as “Trough”, and for experiments run in Presentation, the triggers should be indicated as “Peak”. Click “Find Events”. If you find a list of events, you probably do have triggers indicating stimuli times. Hooray! If not, make sure the parameters in red are set as shown here. If that doesn’t fix it, triggers were not sent properly.

	After making sure the correct event type is selected for the experiment control software used, save the file by clicking on “Save Fiff”. MNE suggests a filename; it is good practice to use the following naming convention: subjID_experimentname-raw.fiff.

	When the .fiff has been saved, close the GUI.

Coreg without native MRI

In your terminal, run mne coreg. This will launch a GUI with the following interface.

[image: AI generated MEG-system image]

	Navigate to the MRI folder for your experiment in the spot indicated by the blue arrow. If this is the first coreg you are processing for this dataset, you will need to put the fsaverage in the MRI folder to serve as a basis for transformations of your subjects’ heads.

	In Digitization Source, put the .fiff created from earlier for the appropriate subject.

Note

This part of the preprocessing takes the most subjective judgment and hard work thus far.

You will need to align the white net of dots (representing the MEG recording linked with the subject headshape) to the fsaverage headshape. You will do this by manipulating two parameters: translation of the net and transformation of the fsaverage headshape. The former is done with the controls in blue. Current versions of MNE allow the translation to be performed automatically by hitting the buttons marked “Fit (ICP)” and “Fit Fid.”. Fit (ICP) will fit the white dots to the headshape. Fit Fid will fit the markers/points to the headshape markers/points. This approach should be alternated with transforming the headshape using the controls in red. First, you should change Scaling mode to “3-axis”. This will allow the headshape to be transformed in three dimensions independently. To transform, hit Fit (ICP) within red.

Note

If a subject had a particularly thick hairstyle, you can add hair by putting a number (in mm) in green. You can also omit white dots that are too far

3. Navigate to the MRI folder for your experiment in the spot indicated by the blue arrow. If
this is the first coreg you are processing for this dataset, you will need to put the
fsaverage (average headshape and MRI) in the MRI folder to serve as a basis for
transformations of your subjects’ heads. To do this, under the MRI folder, there is a
button for fsaverage=SUBJECTS_DIR. You’ll need to set fsaverage as the headshape
using the dropdown menu below the MRI folder selection; if there are any processed
datasets already in the MRI folder, it will try to set those subjects as the base. Make sure
your base is always fsaverage. In Digitization Source, put the fiff created from earlier for the appropriate subject
4. This part of the preprocessing takes the most subjective judgment and hard work thus
far. You will need to align the white net of dots (representing the MEG recording linked
with the subject headshape) to the fsaverage headshape. You will do this by
manipulating two parameters: translation of the net and transformation of the fsaverage
headshape. The former is done with the controls in blue. Current versions of MNE allow
the translation to be performed automatically by hitting the buttons marked “Fit (ICP)”
and “Fit Fid.”. Fit (ICP) will fit the white dots to the headshape. Fit Fid will fit the
markers/points to the headshape markers/points.
This approach should be alternated with transforming the headshape using the controls
in red. First, you should change Scaling mode to “3-axis”. This will allow the headshape
to be transformed in three dimensions independently. To transform, hit Fit (ICP) within
red.
If a subject had a particularly thick hairstyle, you can add hair by putting a number (in
mm) in green. You can also omit white dots that are too far from the headshape that
occasionally result from a bad headscan.

[image: AI generated MEG-system image]
5. You can check the fit of the headshape by rotating the head around in the grey panel
with your mouse. The goal is to have the white net of dots lying flush with the surface of
the head with minimal gaps between the dots and headshape, and with minimal
embedding of the dots inside the headshape. Don’t be too concerned with aligning the
point of the net marked with the black arrow below; that isn’t part of the subject’s head. It
is part of the neckbrace.

[image: AI generated MEG-system image]
6. When you are satisfied with the fit, hit Save. This produces many files, and takes a fair
amount of time. It generates the BEM (Boundary Element Model)1 files, the anatomical
files, and a .trans file that maps the anatomicals of the fsaverage to the subject.
7. When this is finished, close the GUI

To see if something needs to be kit2fiffed, see if there is a -raw.fif file.
To see if something needs to be coreged, see if there is a -trans.fif file

	Fit(ICP)

	Scaling mode = 3-axis

	Fit(ICP) scaling parameters

	Back and forth Fit

	Screenshot all five views to put in coreg reports

Software stack

MEG data analysis:

	LabMaestroSimulator

	BEESA

	MNE Python library

Example:

Samantha’s experiment called Arabic Tark_VpixxEdit contains a .sce, .exp, .tem

What is Tark Localizer?

they are called
Tark_Localiser.sce
Task_localiser.exp
Tark_Loc_Main_Trial_GR.tem

When you open the .sce, you see a code that define the name of the scenario, font size, active buttons

Everytime the experiment is ran, a logfile seems to be created in

Output:

On the computer of the MEG MAIN PC, an experiment can yield different files:

	
	a .con file shows the signals on top of each other, and the strength of the magnetic field on what part of the brain the unit can be
	
	pT: picoTesla

	fT: femtoTesla

	a .mrk file

This website adds quite a few details to these extensions https://mne.tools/stable/auto_tutorials/io/10_reading_meg_data.html

The files can be opened with MEG Lab

BESA Software

The following steps are primary to process MEG data using the BESA MRI and BESA Research suite

You have MRI data of your participant

Open BESA MRI, start a new segmentation project, check all the segmentation options (especially BEM and FEM), pick the landmarks for segmentation
and start the process. Once done, BESA will save the segmentation, BEM, FEM model outputs.

In BESA MRI, start a new coregistration project.

Open BESA Research, load your MEG data from a .fif format.

Generic processing pipeline

Manual labelling of “bad” channels

Denoising

Awareness of the many sources of noise:

	Related to the site in which the MEG system is installed

	Related to conditions that could happen from time to time (parking garage nearby,)

Once the reasons are understood, we can identify the pattern that the noise makes.

With training data of the different possible noises, it is very possible to train a neural classifier
that could identify the noise coming from the different sources and be able to denoise it from the MEG data.

Independent component analysis

Independent component analysis (ICA) is commonly used to generate what is supposed a set of independent
signals from a given set of assumingly correlated signals.

The signals produced by MEG are highly correlated, therefore ICA is suitable to reduce correlation.
Given a set of MEG signal X(t), ICA learns a matrix W and the output signals S(t) such that

add latex here: X(t) = W.S(t)

ICA can perform well to identify the noise signals that has a certain long lasting continuous-time pattern, but less efficient when the noise is a single event, happening at irregular periods of time.

Calling ICA withint a Python pipeline

 projs, raw.info['projs'] = raw.info['projs'], []
 ica.fit(raw)
 raw.info['projs'] = projs

Frequency Analysis

Fast-oscillating signals means high frequencies, while slow oscillations are low frequencies.
In fourier space (signal represented by its Fourier transform) we can see the frequency components constituting
the signal. FFT (Fast Fourier Transform) algorithm is commonly to identify the frequency components.

Research showed that signals at different frequencies have different functions at different locations of the brain.
In other words, given a region of the brain, signals of frequency 8Hz are responsible of an activity that is much different than signals with frequency 20 Hz

Brain Source Estimate

When neurons become active, they do so in large groups.

Code Overview

The code for an example.

This installs dependencies

Install required Meg-pipeline dependencies
import matplotlib as plt
import mne

Footnotes

 Pipeline Notebooks

Pipeline Notebooks

	Resting State Processing Pipeline

	Data preparation and coregistration after data acquisition

	Coregistration after KIT2FIFF
	You have MRI anatomical data of the participant

	You do not have the MRI anatomical data of the participant

	Conclusion

	Source estimation and localization
	Generating the BEM

	Plotting the BEM for visual inspection

	Source localization and estimation

	Close-up on forward solutions

Footnotes

 Resting State Processing Pipeline

Resting State Processing Pipeline

Author: Hadi Zaatiti hadi.zaatiti@nyu.edu

In this script we will be processing data generated from the KIT-MEG for a resting state experiment.

The experiment has been conducted using the code in Link Text[#1] involving a 5 minutes eyes closed followed by a 5 minutes eyes open of the participant.

The data can be accessed at Data Storage[#2] we will be using the resting_state/sub-01 BIDS dataset

After downloading the data, be familiar with the different files in the meg-kit folder:

	The .con are the raw files produced by the KIT machine, has the MEG time series for each channel

	The .con that has analysis in their name, have already applied a filter to account for the noisy magnetic field in the MSR, the latter is measured with the magnetometers of the KIT, this file contains the filtered MEG time series for each channel

	The .mrk has the markers position from KIT

	The .fif is produced by applying KIT2FIFF command provided by the MNE environment from the filtered .con file and the .mrk files (Check the KIT2FIF tutorial in this documentation)

	We obtained two .fif files, one for eyes closed and one for eyes open

Import mne and set visualisations to show in the notebook

[1]:

%matplotlib inline
import matplotlib.pyplot as plt

import mne

Load your .fif file for eyes closed

[2]:

Load your FIFF file
raw = mne.io.read_raw_fif(r"C:\Users\hz3752\Box\MEG\Data\resting-state\sub-01\meg-kit\sub-01_01-eyes-closed-raw.fif", verbose=False)

Display the info structure from the data

[3]:

print(raw.info)

<Info | 13 non-empty values
 bads: []
 ch_names: MEG 001, MEG 002, MEG 003, MEG 004, MEG 005, MEG 006, MEG 007, ...
 chs: 207 Magnetometers, 17 Reference Magnetometers, 32 misc, 1 Stimulus
 custom_ref_applied: False
 description: New York University Abu Dhabi/224-channel MEG System (442) ...
 dev_head_t: MEG device -> head transform
 dig: 3459 items (3 Cardinal, 5 HPI, 3451 Extra)
 file_id: 4 items (dict)
 highpass: 0.0 Hz
 kit_system_id: 442 (New York University Abu Dhabi, 2014-)
 lowpass: 500.0 Hz
 meas_date: 2024-04-19 09:05:59 UTC
 meas_id: 4 items (dict)
 nchan: 257
 projs: []
 sfreq: 1000.0 Hz
>

Let us plot the sensor layout of the system used in the data acquisition (KIT-MEG)

[4]:

For a 2D topographic plot of the sensor locations
raw.plot_sensors(kind='topomap', show_names=True);

[image: ../../_images/4-pipeline_notebooks_resting_state_pipeline_10_0.png]

[5]:

For a 3D plot, you can also do:
fig = raw.plot_sensors(kind='3d', show_names=True)

[image: ../../_images/4-pipeline_notebooks_resting_state_pipeline_11_0.png]

Let us visualise the data and plot the first 5 seconds of the data interactively)

[6]:

%matplotlib inline
Plot the first 5 seconds of the data
raw.plot(start=0, duration=5)

Using qt as 2D backend.

[6]:

<mne_qt_browser._pg_figure.MNEQtBrowser at 0x21f2a46fac0>

You should see the following interactive window

[image: Data visualisation]

From the above interactive window, you can mark channels as bad by visual inspection

Notice that in MNE, the channels have different types

	MEG, for our system a .fif will show MEG 001 to MEG 208 are of type mag

	MISC, for our system this will show from MISC 001 to MISC 032 are of type misc

	STIM, for our system this will show as STI 014 are of type stim

Let us print the channel types from our raw data.

[7]:

print(raw.info.get_channel_types())

['mag', 'ref_meg', 'mag', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'ref_meg', 'misc', 'stim']

Let us print all the channel names

[8]:

print(raw.ch_names)

['MEG 001', 'MEG 002', 'MEG 003', 'MEG 004', 'MEG 005', 'MEG 006', 'MEG 007', 'MEG 008', 'MEG 009', 'MEG 010', 'MEG 011', 'MEG 012', 'MEG 013', 'MEG 014', 'MEG 015', 'MEG 016', 'MEG 017', 'MEG 018', 'MEG 019', 'MEG 020', 'MEG 021', 'MEG 022', 'MEG 023', 'MEG 024', 'MEG 025', 'MEG 026', 'MEG 027', 'MEG 028', 'MEG 029', 'MEG 030', 'MEG 031', 'MEG 032', 'MEG 033', 'MEG 034', 'MEG 035', 'MEG 036', 'MEG 037', 'MEG 038', 'MEG 039', 'MEG 040', 'MEG 041', 'MEG 042', 'MEG 043', 'MEG 044', 'MEG 045', 'MEG 046', 'MEG 047', 'MEG 048', 'MEG 049', 'MEG 050', 'MEG 051', 'MEG 052', 'MEG 053', 'MEG 054', 'MEG 055', 'MEG 056', 'MEG 057', 'MEG 058', 'MEG 059', 'MEG 060', 'MEG 061', 'MEG 062', 'MEG 063', 'MEG 064', 'MEG 065', 'MEG 066', 'MEG 067', 'MEG 068', 'MEG 069', 'MEG 070', 'MEG 071', 'MEG 072', 'MEG 073', 'MEG 074', 'MEG 075', 'MEG 076', 'MEG 077', 'MEG 078', 'MEG 079', 'MEG 080', 'MEG 081', 'MEG 082', 'MEG 083', 'MEG 084', 'MEG 085', 'MEG 086', 'MEG 087', 'MEG 088', 'MEG 089', 'MEG 090', 'MEG 091', 'MEG 092', 'MEG 093', 'MEG 094', 'MEG 095', 'MEG 096', 'MEG 097', 'MEG 098', 'MEG 099', 'MEG 100', 'MEG 101', 'MEG 102', 'MEG 103', 'MEG 104', 'MEG 105', 'MEG 106', 'MEG 107', 'MEG 108', 'MEG 109', 'MEG 110', 'MEG 111', 'MEG 112', 'MEG 113', 'MEG 114', 'MEG 115', 'MEG 116', 'MEG 117', 'MEG 118', 'MEG 119', 'MEG 120', 'MEG 121', 'MEG 122', 'MEG 123', 'MEG 124', 'MEG 125', 'MEG 126', 'MEG 127', 'MEG 128', 'MEG 129', 'MEG 130', 'MEG 131', 'MEG 132', 'MEG 133', 'MEG 134', 'MEG 135', 'MEG 136', 'MEG 137', 'MEG 138', 'MEG 139', 'MEG 140', 'MEG 141', 'MEG 142', 'MEG 143', 'MEG 144', 'MEG 145', 'MEG 146', 'MEG 147', 'MEG 148', 'MEG 149', 'MEG 150', 'MEG 151', 'MEG 152', 'MEG 153', 'MEG 154', 'MEG 155', 'MEG 156', 'MEG 157', 'MEG 158', 'MEG 159', 'MEG 160', 'MEG 161', 'MEG 162', 'MEG 163', 'MEG 164', 'MEG 165', 'MEG 166', 'MEG 167', 'MEG 168', 'MEG 169', 'MEG 170', 'MEG 171', 'MEG 172', 'MEG 173', 'MEG 174', 'MEG 175', 'MEG 176', 'MEG 177', 'MEG 178', 'MEG 179', 'MEG 180', 'MEG 181', 'MEG 182', 'MEG 183', 'MEG 184', 'MEG 185', 'MEG 186', 'MEG 187', 'MEG 188', 'MEG 189', 'MEG 190', 'MEG 191', 'MEG 192', 'MEG 193', 'MEG 194', 'MEG 195', 'MEG 196', 'MEG 197', 'MEG 198', 'MEG 199', 'MEG 200', 'MEG 201', 'MEG 202', 'MEG 203', 'MEG 204', 'MEG 205', 'MEG 206', 'MEG 207', 'MEG 208', 'MEG 209', 'MEG 210', 'MEG 211', 'MEG 212', 'MEG 213', 'MEG 214', 'MEG 215', 'MEG 216', 'MEG 217', 'MEG 218', 'MEG 219', 'MEG 220', 'MEG 221', 'MEG 222', 'MEG 223', 'MEG 224', 'MISC 001', 'MISC 002', 'MISC 003', 'MISC 004', 'MISC 005', 'MISC 006', 'MISC 007', 'MISC 008', 'MISC 009', 'MISC 010', 'MISC 011', 'MISC 012', 'MISC 013', 'MISC 014', 'MISC 015', 'MISC 016', 'MISC 017', 'MISC 018', 'MISC 019', 'MISC 020', 'MISC 021', 'MISC 022', 'MISC 023', 'MISC 024', 'MISC 025', 'MISC 026', 'MISC 027', 'MISC 028', 'MISC 029', 'MISC 030', 'MISC 031', 'MISC 032', 'STI 014']

Let us plot the MISC 001 channel that contains the trigger, it is a good practice to copy the raw data before picking a specific channel since the picking operation changes

[9]:

%matplotlib inline
channel_name = 'MISC 001'
raw_picked = raw.copy().pick_channels([channel_name])
scalings = {'misc':0.1}

raw_picked.plot(scalings = scalings, duration=315, start=0, n_channels=1)

NOTE: pick_channels() is a legacy function. New code should use inst.pick(...).

[9]:

<mne_qt_browser._pg_figure.MNEQtBrowser at 0x21f2bdf3ac0>

You should see the trigger channel going from 0 to 1 over a period of 5 minutes, corresponding to the eyes closed period as in the following image. The AU unit on the Y-axis correspond to arbitrary unit.

[image: Trigger visualisation]

Note the times of beginning and end of the trigger as respectively 11 seconds and 310 seconds, let’s do FFT on the data for this time

[10]:

croped_data = raw.copy()

[11]:

croped_data.crop(11, 310)

[11]:

 Data preparation and coregistration after data acquisition

Data preparation and coregistration after data acquisition

Author: Hadi Zaatiti hadi.zaatiti@nyu.edu

In this notebook, we shall do the initial data processing of the raw data generated by an MEG experiment. Prepare the following files to go through this notebook: Prerequisits: Obtained from the laser scan:

	Headscan basic surface .txt

	Headscan points .txt

Obtained from the KIT-MEG machine:

	Marker measurement (x2) .mrk

	MEG recording con.

Environment: Have MNE with all dependencies installedc From these files we will n .create .fif files, the base file format for MNE

In a terminal, run the following command, the following is an example on Windows CMD terminal.

[1]:

%%cmd
mne kit2fiff

Microsoft Windows [Version 10.0.22631.3447]
(c) Microsoft Corporation. All rights reserved.

(mne-1.6.1_0) C:\Users\hz3752\PycharmProjects\meg-pipeline\docs\source\4-pipeline\notebooks>mne kit2fiff
**
WARNING: Imported VTK version (9.3) does not match the one used
 to build the TVTK classes (9.2). This may cause problems.
 Please rebuild TVTK.
**

(mne-1.6.1_0) C:\Users\hz3752\PycharmProjects\meg-pipeline\docs\source\4-pipeline\notebooks>

[image: image1.png]

Place the two .mrk in the Source marker 1 and Source marker 2, then in Sources, place the .con in Data, the head scan .txt in Digitizer head shape and the head scan points .txt in Digitizer Fiducials

[image: image2.png] You should now see the head scan, markers and scan points. Press the SAVE FIFF to save all the data within a .fiff.

Let us now load the .fiff within python and check its structure of the .fif

[2]:

%matplotlib inline
import mne
import matplotlib.pyplot as plt

raw = mne.io.read_raw_fif(r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\sub-01_01-eyes-closed-raw.fif')

raw.plot(duration = 15)
plt.show()
print(raw.info.get_channel_types())

plt.show()

Opening raw data file C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\sub-01_01-eyes-closed-raw.fif...

FileNotFoundError Traceback (most recent call last)
Cell In[2], line 5
 2 import mne
 3 import matplotlib.pyplot as plt
----> 5 raw = mne.io.read_raw_fif(r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\sub-01_01-eyes-closed-raw.fif')
 8 raw.plot(duration = 15)
 9 plt.show()

File C:\ProgramData\mne-python\1.6.1_0\Lib\site-packages\mne\io\fiff\raw.py:543, in read_raw_fif(fname, allow_maxshield, preload, on_split_missing, verbose)
 502 @fill_doc
 503 def read_raw_fif(
 504 fname, allow_maxshield=False, preload=False, on_split_missing="raise", verbose=None
 505):
 506 """Reader function for Raw FIF data.
 507
 508 Parameters
 (...)
 541 are updated accordingly.
 542 """
--> 543 return Raw(
 544 fname=fname,
 545 allow_maxshield=allow_maxshield,
 546 preload=preload,
 547 verbose=verbose,
 548 on_split_missing=on_split_missing,
 549)

File <decorator-gen-179>:12, in __init__(self, fname, allow_maxshield, preload, on_split_missing, verbose)

File C:\ProgramData\mne-python\1.6.1_0\Lib\site-packages\mne\io\fiff\raw.py:105, in Raw.__init__(self, fname, allow_maxshield, preload, on_split_missing, verbose)
 103 next_fname = fname
 104 while next_fname is not None:
--> 105 raw, next_fname, buffer_size_sec = self._read_raw_file(
 106 next_fname, allow_maxshield, preload, do_check_ext
 107)
 108 do_check_ext = False
 109 raws.append(raw)

File <decorator-gen-180>:12, in _read_raw_file(self, fname, allow_maxshield, preload, do_check_ext, verbose)

File C:\ProgramData\mne-python\1.6.1_0\Lib\site-packages\mne\io\fiff\raw.py:187, in Raw._read_raw_file(self, fname, allow_maxshield, preload, do_check_ext, verbose)
 185 check_fname(fname, "raw", endings)
 186 # filename
--> 187 fname = str(_check_fname(fname, "read", True, "fname"))
 188 ext = os.path.splitext(fname)[1].lower()
 189 whole_file = preload if ".gz" in ext else False

File <decorator-gen-0>:12, in _check_fname(fname, overwrite, must_exist, name, need_dir, verbose)

File C:\ProgramData\mne-python\1.6.1_0\Lib\site-packages\mne\utils\check.py:263, in _check_fname(fname, overwrite, must_exist, name, need_dir, verbose)
 261 raise PermissionError(f"{name} does not have read permissions: {fname}")
 262 elif must_exist:
--> 263 raise FileNotFoundError(f'{name} does not exist: "{fname}"')
 265 return fname

FileNotFoundError: fname does not exist: "C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\sub-01_01-eyes-closed-raw.fif"

Coregistration after KIT2FIFF

Coregistration involves aligning the MEG sensor axis, with the axis of the MRI headscan.

Different transformations can be applied during this coregistration:

	Scaling: making the head bigger or smaller to adjust to the volume of the system

	linear transformation: this involves translating the head scan to match the center of the MEG helmet

	rotation

Non-linear transformations are not used in MEG coregistration.

You have MRI anatomical data of the participant

In this situation, the participant has had his head scanned in the MRI. Get the MRI ID of the participant and cross check it in the .csv file on NYU BOX, since the ID of the participants in MEG is different than the one in MRI.

T1w scans are needed and provided as input to the HPC brainsegmentation freesurfer pipeline. The MRI Lab team will provide you with the complete segmentation output folder, however this will not contain the BEM/FEM model needed for source localization.

At this point you can follow the tutorial on computing the BEM prior to proceeding.

We are now ready to coregister the participant head scan with the MEG sensors positions.

You can run the following script to launch a mne coregistration GUI

[]:

import mne
from PyQt5.QtWidgets import QApplication
import sys

app = QApplication.instance() # checks if QApplication already exists
if not app: # create QApplication if it doesnt exist
 app = QApplication(sys.argv)

mne.gui.coregistration(
 inst=r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\Sub-0037\sub-01_01-eyes-closed-raw.fif',
 subject='Sub-0037',
 subjects_dir=r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w', # contains a sub-folder for subject
 head_high_res=True,
)

app.exec_()

The MNE Coreg GUI is open at this point, if it is the first time you open the GUI you will get the message that there are no fiducials that have been found in the bem directory. In such case you will now need to set the fiducials

There is basically three points that needs to be set:

	the Nasion

	the LPA: the left pre-aucular

	the RPA: the right pre-aucular

Set each one of them and then save the fiducials. A file called sub-id-fiducials.fif is then created in the bem directory At this point you will see the digitized headscan from the laser scan, with the MRI headshape.

Apply the Fit fiducials and then the Fit ICp algorithms to match respectivaly the HPI coils markers and headscan with the three points previously.

Perform any additional translation, rotation that can seem needed to have the best alignment.

[image: image.png]

You do not have the MRI anatomical data of the participant

(Add part how to use fsaverage, to match a generic headshape to the positions of the HPI coil markers)

Conclusion

We now have the necesary .fif files to perform the source localization. You can now proceed to the source localization notebook.

[]:

Footnotes

 Source estimation and localization

Source estimation and localization

Author: Hadi Zaatiti hadi.zaatiti@nyu.edu

A Boundary Element Model (BEM) is a computational model used primarily in the field of neuroimaging, especially in magnetoencephalography (MEG) and electroencephalography (EEG), to help solve the forward problem, which involves calculating the electric or magnetic fields generated by neuronal activity in the brain at the sensors located on the scalp.

The NYUAD MRI lab will provide the MRI T1w scans of the participant, with segmentation of the different parts of the brain and different volumetry and other freesurfer analysis.

An example of such data is available under NYU BOX, https://nyu.box.com/v/meg-datafiles Access the directory: Box\MEG\Data\resting-state\sub-01\anat

Requirements: Having ran mne kit2fiff and mne coreg as explained previously

Generating the BEM

We will now compute and plot the BEM model for the participant. Set the freesurfer SUBJECTS_DIR to Box\MEG\Data\resting-state\sub-01\anat\outputs\PostFreeSurfer\T1w\Sub-0037 where Sub-0037 is the MRI ID of the subject.

Note that the ID in MEG for a participant are different than the ID in MRI.

Generate the head surfaces files using the command

mkheadsurf -subjid sub-0037You should see the following output

INFO: log file is /home/USERNAME/freesurferproject/subjects//sub-0037/scripts/mkheadsurf.log

Wed May 8 15:15:41 +04 2024
/home/USERNAME/freesurferproject/subjects/sub-0037
mri_seghead --invol /home/USERNAME/freesurferproject/subjects//sub-0037/mri/T1.mgz --outvol /home/USERNAME/freesurferproject/subjects//sub-0037/mri/seghead.mgz --fill 1 --thresh1 20 --thresh2 20 --nhitsmin 2 --rescale --fill-holes-islands

input volume: /home/USERNAME/freesurferproject/subjects//sub-0037/mri/T1.mgz
output volume: /home/USERNAME/freesurferproject/subjects//sub-0037/mri/seghead.mgz
threshold1: 20
threshold2: 20
nhitsmin: 2
fill value: 1
Loading input volume
Changing type, rescale = 1, fhi=0.999
Filling Columns
Filling Rows
Filling Slices
Merging
nhits = 2546749
Removing islands
MRIremoveVolumeIslands() thresh=0.5, nKeep=1, nclusters = 35
Removing Volume Holes
MRIremoveVolumeHoles() thresh=0.5, nKeep=1
MRIremoveVolumeIslands() thresh=0.5, nKeep=1, nclusters = 1
Filling axial Slice Holes
ostr LIA
slicedir 6 slicediruse 2
slicedim 256 1 256
MRIremoveSliceHodes() removed 35899 voxels
Filling sag Slice Holes
ostr LIA
slicedir 4 slicediruse 1
slicedim 1 256 256
MRIremoveSliceHodes() removed 3538 voxels
Filling cor Slice Holes
slicedir 2 slicediruse 2
slicedim 256 1 256
MRIremoveSliceHodes() removed 0 voxels
Counting
N Head Voxels = 2585413
N Back Voxels = 14191803
Avg. Back Intensity = 1.097717
Max. Back Intensity = 205.000000
Writing output
Done

constructing final surface...
(surface with 291644 faces and 145822 vertices)...done
computing the maximum edge length...1.414214 mm
reversing orientation of faces...
checking orientation of surface...
0.000 % of the vertices (0 vertices) exhibit an orientation change

counting number of connected components...
 145822 voxel in cpt #1: X=0 [v=145822,e=437466,f=291644] located at (1.178080, 5.080982, -25.954636)
For the whole surface: X=0 [v=145822,e=437466,f=291644]
One single component has been found
nothing to do
writing out surface...done

Wed May 8 15:15:59 +04 2024
/home/USERNAME/freesurferproject/subjects/sub-0037
mris_smooth -n 10 -nw /home/USERNAME/freesurferproject/subjects/sub-0037/surf/lh.seghead /home/USERNAME/freesurferproject/subjects/sub-0037/surf/lh.seghead

smoothing for 10 iterations
smoothing surface tessellation for 10 iterations...
smoothing complete - recomputing first and second fundamental forms...
Started at: Wed May 8 15:15:41 +04 2024
Ended at: Wed May 8 15:16:01 +04 2024
mkheadsurf done

The command will generate the head segmentation file mri\seghead.mgz

We will now generate the boundary for the brain, the inner skull and outer skull and skin

mne watershed_bem --subject sub-0037

You should the following output

Running mri_watershed for BEM segmentation with the following parameters:

Results dir = /home/USERNAME/freesurferproject/subjects/sub-0037/bem/watershed
Command = mri_watershed -useSRAS -surf /home/USERNAME/freesurferproject/subjects/sub-0037/bem/watershed/sub-0037 /home/USERNAME/freesurferproject/subjects/sub-0037/mri/T1.mgz /home/USERNAME/freesurferproject/subjects/sub-0037/bem/watershed/ws

Running subprocess: mri_watershed -useSRAS -surf /home/USERNAME/freesurferproject/subjects/sub-0037/bem/watershed/sub-0037 /home/USERNAME/freesurferproject/subjects/sub-0037/mri/T1.mgz /home/USERNAME/freesurferproject/subjects/sub-0037/bem/watershed/ws

Mode: use surfaceRAS to save surface vertex positions
Mode: Saving out BEM surfaces

The input file is /home/USERNAME/freesurferproject/subjects/sub-0037/mri/T1.mgz
The output file is /home/USERNAME/freesurferproject/subjects/sub-0037/bem/watershed/ws

*************************WATERSHED**************************
Sorting...
 T1-weighted MRI image
 modification of the preflooding height to 15 percent
 Count how many 110 voxels are present : 263997

 Find the largest 110-component...
 heap usage = 468888 Kbytes.
 removing small segments (less than 1 percent of maxarea).done
 And identify it as the main brain basin...done
 Main component: 244657 voxels
 first estimation of the COG coord: x=125 y=137 z=127 r=70
 first estimation of the main basin volume: 1464330 voxels
 global maximum in x=113, y=115, z=93, Imax=255
 CSF=15, WM_intensity=110, WM_VARIANCE=5
 WM_MIN=110, WM_HALF_MIN=110, WM_HALF_MAX=110, WM_MAX=110
 preflooding height equal to 15 percent
done.
Analyze...

 main basin size= 1453495 voxels, voxel volume =1.000
 = 1453495 mmm3 = 1453.495 cm3
done.
PostAnalyze...
 ***** 0 basin(s) merged in 1 iteration(s)
 ***** 0 voxel(s) added to the main basin
done.

****************TEMPLATE DEFORMATION****************

 second estimation of the COG coord: x=127,y=140, z=126, r=9052 iterations
^^^^^^^^ couldn't find WM with original limits - expanding ^^^^^^

 GLOBAL CSF_MIN=0, CSF_intensity=5, CSF_MAX=19 , nb = 43452
 Problem with the least square interpolation in GM_MIN calculation.

 CSF_MAX TRANSITION GM_MIN GM
 GLOBAL
 before analyzing : 19, 37, 59, 76
 after analyzing : 19, 51, 59, 57
 mri_strip_skull: done peeling brain
 highly tesselated surface with 10242 vertices
 matching...66 iterations

*********************VALIDATION*********************
curvature mean = -0.014, std = 0.011
curvature mean = 67.170, std = 7.285

No Rigid alignment: -atlas Mode Off (basic atlas / no registration)
 before rotation: sse = 5.20, sigma = 8.02
 after rotation: sse = 5.20, sigma = 8.02
Localization of inacurate regions: Erosion-Dilation steps
 the sse mean is 5.43, its var is 7.01
 before Erosion-Dilatation 1.89% of inacurate vertices
 after Erosion-Dilatation 0.00% of inacurate vertices
 Validation of the shape of the surface done.
Scaling of atlas fields onto current surface fields

********FINAL ITERATIVE TEMPLATE DEFORMATION********
Compute Local values csf/gray
Fine Segmentation...41 iterations

 mri_strip_skull: done peeling brain

Brain Size = 1454766 voxels, voxel volume = 1.000 mm3
 = 1454766 mmm3 = 1454.766 cm3

 outer skin surface matching...119 iterations

Saving /home/USERNAME/freesurferproject/subjects/sub-0037/bem/watershed/ws
done
mri_watershed done
error: unknown file type for file (/home/USERNAME/freesurferproject/subjects/sub-0037/bem/watershed/ws)
Overwriting existing file.
Overwriting existing file.
Overwriting existing file.
Overwriting existing file.
Symbolic links to .surf files created in bem folder

Thank you for waiting.
The BEM triangulations for this subject are now available at:
/home/USERNAME/freesurferproject/subjects/sub-0037/bem.
outer skin CM is 1.20 -0.97 -16.05 mm
Surfaces passed the basic topology checks.
Created /home/USERNAME/freesurferproject/subjects/sub-0037/bem/sub-0037-head.fif

Complete.

You should see the following files in your subject directory - the brain boundary bem\brain.surf - the inner skull boundary bem\inner_skull.surf - the outer skull boundary bem\outer_skull.surf - the outer skin boundary bem\outer_skin.surf

A sub-0037-head.fif file should be generated aswell in the bem folder. Note that for MEG, the inner skull boundary would be enough to do source localization and estimation. However, for EEG 3 layers (inner skull, outer skull, and skin) are typically used. Let us now plot the boundaries that we generated using MNE.

Plotting the BEM for visual inspection

Let us now plot the boundaries that we generated using MNE

[1]:

%matplotlib inline
import mne

[2]:

fif_path = r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\Sub-0037\bem\sub-0037-head.fif'

Load the BEM surfaces from the generated .fif file
bem_surfaces = mne.read_bem_surfaces(fif_path)

Plot the BEM surfaces
mne.viz.plot_bem(subject='sub-0037',
 subjects_dir=r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w',
 brain_surfaces='white',
 src=None,
 orientation='coronal')

 1 BEM surfaces found
 Reading a surface...
[done]
 1 BEM surfaces read
Using surface: C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\bem\inner_skull.surf
Using surface: C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\bem\outer_skull.surf
Using surface: C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\bem\outer_skin.surf

C:\ProgramData\mne-python\1.6.1_0\Lib\site-packages\mne\viz\utils.py:165: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
 (fig or plt).show(**kwargs)

[2]:

[image: ../../_images/4-pipeline_notebooks_computing_bem_model_16_2.png]

[image: ../../_images/4-pipeline_notebooks_computing_bem_model_16_3.png]

Source localization and estimation

Generating source space, refers to the process of creating a model of where in the brain the magnetic fields are being generated from. This model is essential for solving the inverse problem, which involves estimating the neuronal activity that causes the measured magnetic fields on the scalp.

[3]:

import mne
subject='sub-0037'
subjects_dir=r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w'

source_space = mne.setup_source_space(subject,spacing='ico4',subjects_dir=subjects_dir)

source_space.save(subjects_dir+'/%s/bem/%s-ico4-src.fif' %(subject,subject), overwrite=True)

Setting up the source space with the following parameters:

SUBJECTS_DIR = C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w
Subject = sub-0037
Surface = white
Icosahedron subdivision grade 4

>>> 1. Creating the source space...

Doing the icosahedral vertex picking...
Loading C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\surf\lh.white...
Mapping lh sub-0037 -> ico (4) ...
 Triangle neighbors and vertex normals...
Loading geometry from C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\surf\lh.sphere...
Setting up the triangulation for the decimated surface...
loaded lh.white 2562/126910 selected to source space (ico = 4)

Loading C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\surf\rh.white...
Mapping rh sub-0037 -> ico (4) ...
 Triangle neighbors and vertex normals...
Loading geometry from C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\surf\rh.sphere...
Setting up the triangulation for the decimated surface...
loaded rh.white 2562/128713 selected to source space (ico = 4)

Calculating source space distances (limit=inf mm)...
 Computing patch statistics...
 Patch information added...
 Computing patch statistics...
 Patch information added...
You are now one step closer to computing the gain matrix
Overwriting existing file.
 Write a source space...
 [done]
 Write a source space...
 [done]
 2 source spaces written

We will now load and visualise the source space together with the BEM model

[4]:

src = mne.read_source_spaces(subjects_dir+'/%s/bem/%s-ico4-src.fif' %(subject,subject))
Plot the bem with the sources
mne.viz.plot_bem(subject=subject, subjects_dir=subjects_dir,brain_surfaces='white',
src=src, orientation='coronal')

 Reading a source space...
 Computing patch statistics...
 Patch information added...
 Distance information added...
 [done]
 Reading a source space...
 Computing patch statistics...
 Patch information added...
 Distance information added...
 [done]
 2 source spaces read
Using surface: C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\bem\inner_skull.surf
Using surface: C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\bem\outer_skull.surf
Using surface: C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\bem\outer_skin.surf

C:\ProgramData\mne-python\1.6.1_0\Lib\site-packages\mne\viz\utils.py:165: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
 (fig or plt).show(**kwargs)

[4]:

[image: ../../_images/4-pipeline_notebooks_computing_bem_model_20_2.png]

[image: ../../_images/4-pipeline_notebooks_computing_bem_model_20_3.png]

[5]:

Create the bem solution.
conductivity = (0.3,) # for single layer

bem_model = mne.make_bem_model(subject=subject,ico=4,conductivity=conductivity,subjects_dir=subjects_dir)

Creating the BEM geometry...
Going from 5th to 4th subdivision of an icosahedron (n_tri: 20480 -> 5120)
inner skull CM is 0.92 -2.09 -11.14 mm
Surfaces passed the basic topology checks.
Complete.

[6]:

Load the BEM surfaces from the generated .fif file
#bem_model = mne.read_bem_surfaces(fif_path)

#Make solutions
bem = mne.make_bem_solution(bem_model)
mne.write_bem_solution(subjects_dir+'/%s/bem/%s-inner-skull.bem.fif' %(subject,subject),bem, overwrite=True)

Homogeneous model surface loaded.
Computing the linear collocation solution...
 Matrix coefficients...
 inner skull (2562) -> inner skull (2562) ...
 Inverting the coefficient matrix...
Solution ready.
BEM geometry computations complete.
Overwriting existing file.

[7]:

bem = mne.read_bem_solution(subjects_dir+'/%s/bem/%s-inner-skull.bem.fif' %(subject,subject))

Loading surfaces...

Loading the solution matrix...

Homogeneous model surface loaded.
Loaded linear collocation BEM solution from C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\anat\outputs\PostFreeSurfer\T1w\sub-0037\bem\sub-0037-inner-skull.bem.fif

We now have the necessary input to compute the forward solution operator. (Bear in mind that this will compute an operator and not apply it to the measurements to get the source time series.)

[8]:

fwd = mne.make_forward_solution(r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\Sub-0037\sub-01_01-eyes-closed-raw.fif',
 trans=r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\%s\%s-trans.fif' %(subject,subject),
 src=src,
 bem=bem,
 meg=True,
 eeg=False,
 ignore_ref=True)

mne.write_forward_solution(r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\%s\%s-fwd.fif' %(subject,subject),
 fwd,
 overwrite=True,
 verbose=None)

Source space : <SourceSpaces: [<surface (lh), n_vertices=126910, n_used=2562>, <surface (rh), n_vertices=128713, n_used=2562>] MRI (surface RAS) coords, subject 'sub-0037', ~22.2 MB>
MRI -> head transform : C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\sub-0037\sub-0037-trans.fif
Measurement data : sub-01_01-eyes-closed-raw.fif
Conductor model : instance of ConductorModel
Accurate field computations
Do computations in head coordinates
Free source orientations

Read 2 source spaces a total of 5124 active source locations

Coordinate transformation: MRI (surface RAS) -> head
 0.999060 0.005683 0.042983 -0.24 mm
 -0.013875 0.981144 0.192780 10.85 mm
 -0.041076 -0.193195 0.980300 67.10 mm
 0.000000 0.000000 0.000000 1.00

Read 207 MEG channels from info
105 coil definitions read
Coordinate transformation: MEG device -> head
 0.990440 -0.137012 0.016000 -1.48 mm
 0.126928 0.950617 0.283226 26.76 mm
 -0.054016 -0.278488 0.958920 64.19 mm
 0.000000 0.000000 0.000000 1.00
MEG coil definitions created in head coordinates.
Source spaces are now in head coordinates.

Employing the head->MRI coordinate transform with the BEM model.
BEM model instance of ConductorModel is now set up

Source spaces are in head coordinates.
Checking that the sources are inside the surface (will take a few...)
Checking surface interior status for 2562 points...
 Found 918/2562 points inside an interior sphere of radius 47.5 mm
 Found 0/2562 points outside an exterior sphere of radius 91.3 mm
 Found 0/1644 points outside using surface Qhull
 Found 0/1644 points outside using solid angles
 Total 2562/2562 points inside the surface
Interior check completed in 498.4 ms
Checking surface interior status for 2562 points...
 Found 858/2562 points inside an interior sphere of radius 47.5 mm
 Found 0/2562 points outside an exterior sphere of radius 91.3 mm
 Found 0/1704 points outside using surface Qhull
 Found 0/1704 points outside using solid angles
 Total 2562/2562 points inside the surface
Interior check completed in 534.4 ms

Checking surface interior status for 207 points...
 Found 0/207 points inside an interior sphere of radius 47.5 mm
 Found 207/207 points outside an exterior sphere of radius 91.3 mm
 Found 0/ 0 points outside using surface Qhull
 Found 0/ 0 points outside using solid angles
 Total 0/207 points inside the surface
Interior check completed in 27.5 ms

Composing the field computation matrix...
Computing MEG at 5124 source locations (free orientations)...

Finished.
 Write a source space...
 [done]
 Write a source space...
 [done]
 2 source spaces written

The number of modeled sources are 5124, there is 2562 source in each hemisphere

[10]:

mag_map = mne.sensitivity_map(fwd, ch_type='mag',mode='free')
mag_map.save(r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\%s\%s_sensitivity-free' %(subject,subject), overwrite=True)

 207 out of 207 channels remain after picking
Writing STC to disk...
Overwriting existing file.
Overwriting existing file.
[done]

[]:

brainmap = mag_map.plot(time_label='Magnetometer Sensitivity', subjects_dir=subjects_dir,clim=dict(lims=[0,50,100]),hemi='split')

We can now visualise the sensitivity map on both hemispheres

[image: image.png]

[]:

[]:

Footnotes

 Close-up on forward solutions

Close-up on forward solutions

In previous notebooks we computed the forward solution operator given the raw data, transformed data, BEM model and source space. In this notebook we investigate deeper the forward solution operator. Let us import the forward solution operator we previously computed.

[10]:

import mne

subjects_dir = r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\Sub-0037\sub-0037-fwd.fif'

fwd = mne.read_forward_solution(subjects_dir, include=(), exclude=(), ordered=True, verbose=None)

Reading forward solution from C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\Sub-0037\sub-0037-fwd.fif...
 Reading a source space...
 Computing patch statistics...
 Patch information added...
 Distance information added...
 [done]
 Reading a source space...
 Computing patch statistics...
 Patch information added...
 Distance information added...
 [done]
 2 source spaces read
 Desired named matrix (kind = 3523) not available
 Read MEG forward solution (5124 sources, 207 channels, free orientations)
 Source spaces transformed to the forward solution coordinate frame

Two possible source orientations exist in MNE, documented in source_ori in fwd: - FIFF.FIFFV_MNE_FIXED_ORI: Fixed orientation mode, the orientation of the source currents is constrained to be perpendicular to the cortical surface. This means that the direction of the current is assumed to be known a priori and is fixed during the inverse solution process. The primary advantage of this approach is its simplicity and reduced computational load. By constraining the direction of the sources,
the number of variables in the inverse problem is effectively halved, which can make the solutions more stable under conditions of noisy data or when the data are limited. - When to use fixed orientation? Fixed orientation is often used when a strong prior knowledge of the orientation of the cortical currents exists (such as orientation aligned with the local sulcal or gyral geometry) or when computational simplicity is required.

	FIFF.FIFFV_MNE_FREE_ORI: Free Orientation: In contrast, free orientation allows the orientation of the source currents to vary and be estimated as part of the source localization process. This mode does not impose any constraints on the direction of the currents, thereby enabling the estimation of the most probable orientation based on the data itself. This can potentially lead to more accurate reconstructions of the underlying neural activity, particularly in complex scenarios where the
orientation of the sources cannot be easily predicted.

	When to use free orientation?: Free orientation is particularly useful in research settings where the precise modeling of neural activity is crucial, and where there is enough high-quality data to support the increased complexity of the inverse solution. For the data we red, let us print which source orientation was used:

[2]:

print(fwd['source_ori'])

2 (FIFFV_MNE_FREE_ORI)

The location of the sources are in source_rr

[3]:

print(fwd['source_rr'])

[[-0.0210264 -0.06770435 0.06570835]
 [-0.01708252 -0.06216683 0.07929588]
 [-0.01315619 -0.06514898 0.07275735]
 ...
 [0.00288066 0.02885441 0.04047859]
 [0.01054338 0.0624362 0.0432792]
 [0.01025996 0.08508232 0.04505657]]

The forward solution operator are in sol they are of shape (n_channels, n_sources * n_orientation) where n_orientation is the number of possible orientations of the source (3 orientations for the free-orientation setup and 1 for the fixed orientation setup), let us print the shape of the solution

[4]:

print(fwd['sol']['data'].shape)

(207, 15372)

This means that we used 15372/3 = 5124 sources and the solutions are computed for 207 MEG gradiometers

[2]:

import mne
Load your raw data
raw = mne.io.read_raw_fif(r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\Sub-0037\sub-01_01-eyes-closed-raw.fif', preload=True)

Opening raw data file C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\Sub-0037\sub-01_01-eyes-closed-raw.fif...
 Range : 0 ... 321999 = 0.000 ... 321.999 secs
Ready.
Reading 0 ... 321999 = 0.000 ... 321.999 secs...

[7]:

#Add covariance matrix computation

#cov = mne.compute_covariance

cov = mne.compute_raw_covariance(raw)
cov.save(r'C:\Users\hz3752\PycharmProjects\mne_bids_pipeline\data\meg\Sub-0037\sub-01-cov.fif')

Using up to 1610 segments
Number of samples used : 322000
[done]

[13]:

 inv = mne.minimum_norm.make_inverse_operator(raw.info, fwd, cov, depth=None, loose='auto', fixed=False) #fixed=False: Ignoring dipole direction.

Converting forward solution to surface orientation
 Average patch normals will be employed in the rotation to the local surface coordinates....
 Converting to surface-based source orientations...
 [done]
Computing inverse operator with 207 channels.
 207 out of 207 channels remain after picking
Selected 207 channels
Applying loose dipole orientations to surface source spaces: 0.2
Whitening the forward solution.
Computing rank from covariance with rank=None
 Using tolerance 8.2e-13 (2.2e-16 eps * 207 dim * 18 max singular value)
 Estimated rank (mag): 207
 MAG: rank 207 computed from 207 data channels with 0 projectors
 Setting small MAG eigenvalues to zero (without PCA)
Creating the source covariance matrix
Adjusting source covariance matrix.
Computing SVD of whitened and weighted lead field matrix.
 largest singular value = 14.1305
 scaling factor to adjust the trace = 7.29474e+27 (nchan = 207 nzero = 3)

[]:

subj='sub-01'
 #--------------------------STCs--------------------------------#

print '%s: Creating STCs...'%subj
 os.makedirs('STC/%s' %subj)
 for ev in evoked:
 stc = mne.minimum_norm.apply_inverse(ev, inv, lambda2=lambda2, method='dSPM')
 # mophing stcs to the fsaverage using precomputed matrix method:
 vertices_to = mne.grade_to_vertices('fsaverage', grade=4, subjects_dir=subjects_dir) #fsaverage's source space
 morph_mat = mne.compute_morph_matrix(subject_from=subj, subject_to='fsaverage', vertices_from=stc.vertices, vertices_to=vertices_to, subjects_dir=subjects_dir)
 stc_morph = mne.morph_data_precomputed(subject_from=subj, subject_to='fsaverage', stc_from=stc, vertices_to=vertices_to, morph_mat=morph_mat)
 stc_morph.save('STC/%s/%s_%s_dSPM' %(subj,subj,ev.comment))
 del stc, stc_morph
 print '>> DONE CREATING STCS FOR SUBJ=%s'%subj
 print '---\n'

 #deleting variables
 del epochs_rej, evoked, info, trans, src, fwd, cov, inv

Footnotes

 Maintenance of MEG system

Maintenance of MEG system

Checks to be made

Helium level

	Every two days check Helium Level it should be higher than 50%

	
	Check the ATP and ATL gas flow and pressure
	
	
	If low Helium pressure (Low G FLOW on the ATL) then
	
	Remove the hose between ATP and ATL

	Check if helium is passing through the hose

	Plug the hose again, see if G Flow increases

	Restart the ATL from the green button on the rear panel

Data retrieval from ATP and ATL for diagnostic

When the ATP and ATL helium recovery system exhibits low gas flow or unusual temperature/pressure,
contact the references below and provide them the following data

	Retrieve data from ATP and ATL by opening an FTP connection to 10.224.44.200 and 10.224.44.201

	Connect to the NYU Abu Dhabi VPN

	Use the following information username: qd, password: 79653

	Navigate to the /StorageCard/DAT_Files/ directory for each of the previous IP addresses, send the latest .dat files

Note

documentation in the link: QD Documentation for Data retrieval[#1]
Sheet to be filled by maintenance team for Helium levels Helium Filling Sheet[#2]

Check air pressure every month

	The air pressure inside the meg can be not so good, it must be 0.7, 0.8 this could be a compressor problem

	When the air pressure is low, the door could be stuck

MSR Door:

	Test the emergency button every week

	Test if the pressure release when using the emergency button is getting heavier or not releasing pressure as it is supposed to be

	If using the manual handle, make sure that to reset the door, you need to put the handle in the original position or else the door won’t reset

Contacts table

	Name

	Email

	Number

	Role

	Hadi Zaatiti

	hz3752@nyu.edu

	+971 56 275 4921

	Research Scientist

	Lawrence Torres

	ljt7767@nyu.edu

	NA

	NA

	Qiang Zhang

	qz19@nyu.edu

	NA

	NA

	QD Helium Recovery

	heliumrecovery@qd-europe.com

	NA

	NA

	QD Konstantin Voigt

	voigt@qd-europe.com

	NA

	NA

	QD Tobias Adler

	adler@qd-europe.com

	NA

	NA

	Ahmed Ansari

	aa7703@nyu.edu

	NA

	Helium store manager (Primary contact for getting Helium tanks)

	Mohammad Rakib

	mr5527@nyu.edu

	NA

	Logistics and Sanitation Coordinator

Footnotes

[#1]
https://nyu.box.com/v/qd-documentation

[#2]
https://docs.google.com/spreadsheets/d/14-yHq_U9Un0HXIno1-XeL928Vmv2yO2f/edit#gid=1063352714

 Emergency procedures

Emergency procedures

Helium leak:
- Contact maintenance team

MSR door locked:
- push the Red emergency button
- if that don’t work use the manual

Footnotes

 Glossary

Glossary

Glossary table

	Word

	Definition

	fROI

	Functional Region of Interest

Footnotes

 API documentation of MEG-Pipeline

API documentation of MEG-Pipeline

	megpipeline

	megpipeline - Python base package for MEG data post-processing.

Footnotes

 megpipeline

megpipeline

megpipeline - Python base package for MEG data post-processing.

Functions

	get_raw_data(self, file_name)

	Return a list of random as strings.

Classes

	MEGpipeline()

	Primary class for MEG pipeline.

Footnotes

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 megpipeline	

 Index

Index

 G
 | M

G

 	
 	get_raw_data() (in module megpipeline.MEGpipeline)

M

 	
 	
 megpipeline

 	module

 	
 	
 module

 	megpipeline

 Kit2Fiff Tutorial

Kit2Fiff Tutorial

There are multiple files produced before and during magnetoencephalography. We will use the following here:

	Headscan basic surface .txt

	Headscan points .txt

	HPI coils Marker measurements (x2 files atleast) .mrk (each .mrk contains the position of 5 fiducial points on the face)

	MEG recording .con

Kit2Fiff

The first step is to convert the recording into a standard format for analysis in MNE, the premier software suite for M/EEG analysis.

	Launch your terminal and activate your anaconda environment for MNE analysis. If you haven’t set up an environment yet, do so.

	In your terminal, run mne kit2fiff. This will launch a GUI with the following interface:

	Using the diagram here as a guide, join the files listed above:

[image: AI generated MEG-system image]
After the files are all loaded, you will see the headscan plotted in the gray panel in the middle of the GUI. You can rotate it around. A small sanity check should be performed here to see if the markers are in their expected position around the head.

Note

The parameters indicated by the red circle below should be set according to the experiment control software.

[image: AI generated MEG-system image]
For experiments run in PsycoPy, the events should be indicated as “Trough”, and for experiments run in Presentation, the triggers should be indicated as “Peak”. Click “Find Events”. If you find a list of events, you probably do have triggers indicating stimuli times. Hooray! If not, make sure the parameters in red are set as shown here. If that doesn’t fix it, triggers were not sent properly.

	After making sure the correct event type is selected for the experiment control software used, save the file by clicking on “Save Fiff”. MNE suggests a filename; it is good practice to use the following naming convention: subjID_experimentname-raw.fiff.

	When the .fiff has been saved, close the GUI.

Coreg without native MRI

In your terminal, run mne coreg. This will launch a GUI with the following interface.

[image: AI generated MEG-system image]

	Navigate to the MRI folder for your experiment in the spot indicated by the blue arrow. If this is the first coreg you are processing for this dataset, you will need to put the fsaverage in the MRI folder to serve as a basis for transformations of your subjects’ heads.

	In Digitization Source, put the .fiff created from earlier for the appropriate subject.

Note

This part of the preprocessing takes the most subjective judgment and hard work thus far.

You will need to align the white net of dots (representing the MEG recording linked with the subject headshape) to the fsaverage headshape. You will do this by manipulating two parameters: translation of the net and transformation of the fsaverage headshape. The former is done with the controls in blue. Current versions of MNE allow the translation to be performed automatically by hitting the buttons marked “Fit (ICP)” and “Fit Fid.”. Fit (ICP) will fit the white dots to the headshape. Fit Fid will fit the markers/points to the headshape markers/points. This approach should be alternated with transforming the headshape using the controls in red. First, you should change Scaling mode to “3-axis”. This will allow the headshape to be transformed in three dimensions independently. To transform, hit Fit (ICP) within red.

Note

If a subject had a particularly thick hairstyle, you can add hair by putting a number (in mm) in green. You can also omit white dots that are too far

3. Navigate to the MRI folder for your experiment in the spot indicated by the blue arrow. If
this is the first coreg you are processing for this dataset, you will need to put the
fsaverage (average headshape and MRI) in the MRI folder to serve as a basis for
transformations of your subjects’ heads. To do this, under the MRI folder, there is a
button for fsaverage=SUBJECTS_DIR. You’ll need to set fsaverage as the headshape
using the dropdown menu below the MRI folder selection; if there are any processed
datasets already in the MRI folder, it will try to set those subjects as the base. Make sure
your base is always fsaverage. In Digitization Source, put the fiff created from earlier for the appropriate subject
4. This part of the preprocessing takes the most subjective judgment and hard work thus
far. You will need to align the white net of dots (representing the MEG recording linked
with the subject headshape) to the fsaverage headshape. You will do this by
manipulating two parameters: translation of the net and transformation of the fsaverage
headshape. The former is done with the controls in blue. Current versions of MNE allow
the translation to be performed automatically by hitting the buttons marked “Fit (ICP)”
and “Fit Fid.”. Fit (ICP) will fit the white dots to the headshape. Fit Fid will fit the
markers/points to the headshape markers/points.
This approach should be alternated with transforming the headshape using the controls
in red. First, you should change Scaling mode to “3-axis”. This will allow the headshape
to be transformed in three dimensions independently. To transform, hit Fit (ICP) within
red.
If a subject had a particularly thick hairstyle, you can add hair by putting a number (in
mm) in green. You can also omit white dots that are too far from the headshape that
occasionally result from a bad headscan.

[image: AI generated MEG-system image]
5. You can check the fit of the headshape by rotating the head around in the grey panel
with your mouse. The goal is to have the white net of dots lying flush with the surface of
the head with minimal gaps between the dots and headshape, and with minimal
embedding of the dots inside the headshape. Don’t be too concerned with aligning the
point of the net marked with the black arrow below; that isn’t part of the subject’s head. It
is part of the neckbrace.

[image: AI generated MEG-system image]
6. When you are satisfied with the fit, hit Save. This produces many files, and takes a fair
amount of time. It generates the BEM (Boundary Element Model)1 files, the anatomical
files, and a .trans file that maps the anatomicals of the fsaverage to the subject.
7. When this is finished, close the GUI

To see if something needs to be kit2fiffed, see if there is a -raw.fif file.
To see if something needs to be coreged, see if there is a -trans.fif file

	Fit(ICP)

	Scaling mode = 3-axis

	Fit(ICP) scaling parameters

	Back and forth Fit

	Screenshot all five views to put in coreg reports

Footnotes

 Software stack

Software stack

MEG data analysis:

	LabMaestroSimulator

	BEESA

	MNE Python library

Example:

Samantha’s experiment called Arabic Tark_VpixxEdit contains a .sce, .exp, .tem

What is Tark Localizer?

they are called
Tark_Localiser.sce
Task_localiser.exp
Tark_Loc_Main_Trial_GR.tem

When you open the .sce, you see a code that define the name of the scenario, font size, active buttons

Everytime the experiment is ran, a logfile seems to be created in

Output:

On the computer of the MEG MAIN PC, an experiment can yield different files:

	
	a .con file shows the signals on top of each other, and the strength of the magnetic field on what part of the brain the unit can be
	
	pT: picoTesla

	fT: femtoTesla

	a .mrk file

This website adds quite a few details to these extensions https://mne.tools/stable/auto_tutorials/io/10_reading_meg_data.html

The files can be opened with MEG Lab

BESA Software

The following steps are primary to process MEG data using the BESA MRI and BESA Research suite

You have MRI data of your participant

Open BESA MRI, start a new segmentation project, check all the segmentation options (especially BEM and FEM), pick the landmarks for segmentation
and start the process. Once done, BESA will save the segmentation, BEM, FEM model outputs.

In BESA MRI, start a new coregistration project.

Open BESA Research, load your MEG data from a .fif format.

Footnotes

 Generic processing pipeline

Generic processing pipeline

Manual labelling of “bad” channels

Denoising

Awareness of the many sources of noise:

	Related to the site in which the MEG system is installed

	Related to conditions that could happen from time to time (parking garage nearby,)

Once the reasons are understood, we can identify the pattern that the noise makes.

With training data of the different possible noises, it is very possible to train a neural classifier
that could identify the noise coming from the different sources and be able to denoise it from the MEG data.

Independent component analysis

Independent component analysis (ICA) is commonly used to generate what is supposed a set of independent
signals from a given set of assumingly correlated signals.

The signals produced by MEG are highly correlated, therefore ICA is suitable to reduce correlation.
Given a set of MEG signal X(t), ICA learns a matrix W and the output signals S(t) such that

add latex here: X(t) = W.S(t)

ICA can perform well to identify the noise signals that has a certain long lasting continuous-time pattern, but less efficient when the noise is a single event, happening at irregular periods of time.

Calling ICA withint a Python pipeline

 projs, raw.info['projs'] = raw.info['projs'], []
 ica.fit(raw)
 raw.info['projs'] = projs

Frequency Analysis

Fast-oscillating signals means high frequencies, while slow oscillations are low frequencies.
In fourier space (signal represented by its Fourier transform) we can see the frequency components constituting
the signal. FFT (Fast Fourier Transform) algorithm is commonly to identify the frequency components.

Research showed that signals at different frequencies have different functions at different locations of the brain.
In other words, given a region of the brain, signals of frequency 8Hz are responsible of an activity that is much different than signals with frequency 20 Hz

Brain Source Estimate

When neurons become active, they do so in large groups.

Code Overview

The code for an example.

This installs dependencies

Install required Meg-pipeline dependencies
import matplotlib as plt
import mne

Footnotes

_images/markers2.jpeg

_images/meg-system.png

_images/kit2fif5.png
CCELEE]

st
ot b 32

®

Dgtorn e
e s s] 8
oo _|anar

o | _om v
e o |

ey s

(unge: 801 12015 Sa 410050 s i 120,00 o)

s -
P

seoon || fura | n (v
faraonton.

© Copy oo s

sm ||t |[v

_images/markers1.jpeg

_static/NYU_Logo.png
el [LIl | @
-
g
é‘/;\
e
e
(
=
5
Oé‘
[
&)
|
[
Z\
i

N
i

.

o

)
i
B
L
D
)
E
=)

_images/msr1.png
i
i v
—
i
i
] -
A
“EEE | I Y E= I |
S8 gl e 1 | 9 |
| 1
i_i
¥
1 s
1 ' Pos. : siehe Stiickliste
! Stiick : siehe Stiickliste
439 JL A Werkstoff : Cu
| Gewicht : 5.496 kg p— B
» (286,9) a
@/ /Ra 12,5 < /Ra 3.2 > Gepriift und freigegeben
Dienst- | HTFFTT | HT-EM
Oberfliche glasperlgestrahlt stelle y
Name ',M //)L\ %
a3 Datum | 120216 | 12.02.16

alle SchweiRnahte) VACUUMSCHMELZE GMBH & Co. KG, HANAU
VACUDMSCHMELZE

Datum | Name JAK: HT-T F; Abschirmungen
Gez. | 03022016] ML | Apschirmkabine VACOSHIELD

Versorgung
MaBst| 1:2(1:5 ' ' '
o0 los0210] WL | v 1200000 (1:5)]Cu 2100 konisch / opt. stimulation (lang +19mm)
Ind. | Datum | Name Anderung Tolerierungsgrundsatz : Emzeltell
Verwendung dieser Unterlage/ Information nur fur den von VAC vor- DIN 7167 (Hullbedingung) Zchng.Nr.
gesehenen Zweck. Weitergabe an Dritte und Vervielfaltigung nur mit MaRe ohne Toleranzangabe:
schriftlicher Genehmigung durch VAC. Alle Rechte (u. a. Patent- DIN ISO 2768-mK 1 47988
oder GM-Eintragung) bleiben vorbehalten. Es besteht Ruckgabepflicht DIN EN I1SO 13920-B SZE'I((:;IH\;\IVUN(I;(
oll Oorks

nach Aufforderung. Zuwiderhandlungen verpflichten zu Schadensersatz.

CAD-Zeichnung darf nur mit CAD geéndert werden

_images/msr2.png
347 |

1940

right side wall from inside

1647

—
5 £
b= IS
w N
N’
i o
o >
5 o]
= [0}
3 L
— ,,\
D
2 i
| AN
\\\\\\ o} 5
Al
O I O
I
- — N 1 | i
© © — O
- — ! Lo - —
D ¢ 7 7 o 0
3 b - N L 7 | C
< % — o ” b u —
0O N *
3o : c o 0202 c
— [e203s} \“ﬁ | [m
— 24 \“ O | | i : I
G L e O
a i 7P, —_ o ” ! @ , —
3 % S < G | Toed G
OO I ferss IS N [mmwﬂ ‘‘‘ 73
2 n.n.n.n.n.n.n. i — W ~ f _ —
I | | -
© BREL ©
DU = o =
s s | 1
%0 . . | —
o el |
=] N © 2 | -
xS o £ o 8 | O
0 X3 —_ -~ !
300% e & | - ” | -
D c E ” H—
AN <+ = 0 a |
S 283
N 89
[R
© C
— @ [} I
oW = s
= Lo
m Z S
£ECO
o S,
S5
c
=0
L
M~
b
(421
P e _As i e R
| i
| <
I
| 2
0 I
52] |
™ !
~ |
m
I
I
I
I
| I
S P
ﬁlgL” [N s
I
I
I
““) |
7 N 7 E C |
1 ?
................ . SN S S -—
: . —_— |
: ! ,ﬂt m “ - — ”
i I o |
=1 L= |
il e !
1 e |
7 18 R N AU O A SO
i I =1
m | | N o :j ““
i H ~ |
7 [» !
e e -— !
e e |
M i[5 !
e ! N m
| | |
o e |
1 | oo | m
-4 | [|
A4 T |
| |
[R
i
M~
b
(421
-
7
L 4 o

_static/file.png

nav.xhtml

 Table of Contents

 		
 MEG/EEG-pipeline documentation page

 		
 MEG System description: KIT Machine

 		
 System Overview

 		
 LAB setup

 		
 MEG-Channels

 		
 MEG-Racks

 		
 MSR: Magnetically Shielded Room

 		
 Contact

 		
 References

 		
 MEG System description: OPM-MEG Machine

 		
 System Overview

 		
 Sensor locations on helmet

 		
 EEG System setup

 		
 MEG Quizz

 		
 Authorization documents

 		
 Operation Protocol

 		
 Stylus location and markers

 		
 Implementing your experiment

 		
 Purpose

 		
 Definning the hardware needs for your experiment

 		
 Hardware involved in experiment

 		
 Files produced by the experiment design

 		
 Experiments

 		
 Experiments example 1 (Psychtoolbox): Resting state

 		
 Experiments example 2 (Psychtoolbox): Triggering all channels on KIT

 		
 Experiments example 3 (Psychopy): Triggering all channels on KIT

 		
 Experiments example 4 (Psychopy): FaceInversion

 		
 Experiments example 5: Response buttons experiment

 		
 Building the requirement of your experiment

 		
 Identifying your usage

 		
 Booking system and scheduling

 		
 Pipeline Description

 		
 General overview

 		
 Data preparation

 		
 Installation

 		
 Reading the Raw Data

 		
 get_raw_data()

 		
 Data storage

 		
 MEG Data storage

 		
 MRI Data storage

 		
 Data naming and uploading protocol

 		
 Laser scan files

 		
 KIT-MEG files

 		
 OPM files

 		
 Data uploading

 		
 Setting up your environment for processing

 		
 Installing freesurfer on windows

 		
 Kit2Fiff Tutorial

 		
 Kit2Fiff

 		
 Coreg without native MRI

 		
 Software stack

 		
 Example:

 		
 BESA Software

 		
 You have MRI data of your participant

 		
 Generic processing pipeline

 		
 Manual labelling of “bad” channels

 		
 Denoising

 		
 Independent component analysis

 		
 Frequency Analysis

 		
 Brain Source Estimate

 		
 Code Overview

 		
 Pipeline Notebooks

 		
 Resting State Processing Pipeline

 		
 Data preparation and coregistration after data acquisition

 		
 Coregistration after KIT2FIFF

 		
 You have MRI anatomical data of the participant

 		
 You do not have the MRI anatomical data of the participant

 		
 Conclusion

 		
 Source estimation and localization

 		
 Generating the BEM

 		
 Plotting the BEM for visual inspection

 		
 Source localization and estimation

 		
 Close-up on forward solutions

 		
 Maintenance of MEG system

 		
 Checks to be made

 		
 Data retrieval from ATP and ATL for diagnostic

 		
 Contacts table

 		
 Emergency procedures

 		
 Glossary

 		
 API documentation of MEG-Pipeline

 		
 megpipeline

_static/plus.png

_static/minus.png

_images/4-pipeline_notebooks_computing_bem_model_16_3.png
2 » B i

% 18 17 157

w I 195 I 26 I 25 I

_images/4-pipeline_notebooks_computing_bem_model_20_2.png
2

w

18

195

B

17

26

i

157

I 25 I

_images/4-pipeline_notebooks_computing_bem_model_16_2.png
2 » B i

% 18 17 157

w I 195 I 26 I 25 I

_images/4-pipeline_notebooks_resting_state_pipeline_11_0.png
0.10 0.05 0.00 -0.05 -0.10
x (m)

_images/4-pipeline_notebooks_resting_state_pipeline_29_1.png
STFT Magnitude - Channel MEG 002

Magnitude

N
E
>
g
g
g
=
L

200 300 400 500
Time (sec)

_images/4-pipeline_notebooks_computing_bem_model_20_3.png
2

w

18

195

B

17

26

i

157

I 25 I

_images/4-pipeline_notebooks_resting_state_pipeline_10_0.png
il OMEG 130
OMEG 072 QVERUE .
22 090 @MEG 060

S1EC gt 07 OVE o08E 121 @MEG 158
oEGgzs o o G025 | OMEG 100
OMEG 144
OMEG 168
o 96062 OMEG 059

e ERYFE 170
OMEG 143G 181 OMEG 2Q6uEG 149MEG 156
@VIEGEMEG 205

OMEG 119MEG 183
OMEG OMEG lSAMEG 129
WifeG emec oWEG 193
OMEG 151 OMEG 208

OMEG 149 £G 157
OiEG oG 181"

_images/KIT-Racks.png
Front view

KIT Machine Racks

FLL FLL ASP ASP

DC DAQ PC ||ReTHM

_images/MEG-image.png

_images/4-pipeline_notebooks_resting_state_pipeline_30_0.png
STFT Magnitude - Channel MEG 001

Magnitude

°

N
E
>
g
g
g
=
L

100 150 200 250
Time (sec)

_images/eye-closed-misc001.png
@ C:\Users\..\sub-01\meg-kit\sub-01_01-eyes-closed-raw.fif - o X
Il I EZ2 Qaais e &

MISC 001

1.86 A

_images/kit2fif1.png
Edit p
Sourcemarker

BELLELEEEECEEE
st marker - s

pos
2 @ 9 @ o
=
] e e
. oo -
o T = 0> |t ks
=
v
i -
GO GRG0
P
] i e i | [——
vow: | | (CCEEEC = 00> | et Gntonsr Troh (5800 8 Pesk (05w
i o © o gt O et
stats. =
|
.
[—————
o || 9199289 s 005 ek

cearm
At | rone | ot

Seale: 0150 |[rckboll -

_images/data-visu.png
© C\Users\..\sub-01\meg-kit\sub-01_01-eyes-closed-raw.fif - o X
o @ Il=21Q 1278180

MEG 001 [t L e e L C e ey I
MEG 002
MEG 003 e e e e e A e
MEG 004 oo
MEG 005
MEG 006 ¥
MEG 007 Py e A s NS AN g s
MEG 008
MEG 009
MEG 010
MEG 011 oot
MEG 012
MEG 013
MEG 014
MEG 015 g A AP b
MEG 016 A A AP B L0 L 0 A S A S b A
MEG 017 e e W S ——
MEG 018 !
MEG 019
MEG 020
02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48

Time e

20%

_images/kit2fif4.png
s CEEEEEEEE

P

RSN
S tons

wone | o |
s 14 | wacn < |
sty ptrs.

_images/kit2fif2.png
orceMathr 3 BEEEEEET)

Dat: o 2203631039 Sovaar Hhcon B

e iy warspace s o EweSOYRIEI Tk
wevo vi w2 @3 ws Batem Joseansses martin TociisL ot
i Sape 6o O
ot [amnionign] et | o e p—
svov) (T 5+ < 005 s DRI oo swvnirs zsoeczo pos e 8
- o9 s,